精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,点B坐标为(0m)(m0),点Ax轴正半轴上,直线AB经过点AB,且tanBAO2

1)若点A的坐标为(30),求直线AB的表达式;

2)反比例函数y的图象与直线AB交于第一象限的CD两点(BDBC),当AD2DB时,求k1的值(用含m的式子表示);

3)在(1)的条件下,设线段AB的中点为E,过点Ex轴的垂线,垂足为M,交反比例函数y的图象于点F.分别连接OEOF,当△OEF与△OBE相似时,请直接写出满足条件的k2值.

【答案】1y=﹣2x+6243或﹣

【解析】

1)先通过解直角三角形求得A的坐标,然后根据待定系数法即可求得直线AB的解析式;

2)作DEOA,根据题意得出,求得DE,即D的横坐标,代入AB的解析式求得纵坐标,然后根据反比例函数图象上点的坐标特征即可求得k1

3)根据勾股定理求得ABOE,进一步求得BE,然后根据相似三角形的性质求得EF的长,从而求得FM的长,得出F的坐标,然后根据反比例函数图象上点的坐标特征即可求得k2

解:(1)∵A30)、B0m)(m0),

OA3OBm

tanBAO2

m6

设直线AB的解析式为ykx+b

代入A30)、B06)得:

解得:b6k=﹣2

∴直线AB的解析式为y=﹣2x+6

2)如图1

AD2DB

DEOA

DEOA1

D的横坐标为1

代入y=﹣2x+6得,y4

D14),

k11×44

3)如图2

A30),B06),

E3),AB

OERtOAB斜边上的中线,

OEABBE

EMx轴,

F的横坐标为

当△OEF∽△OBE

EF

FM3

F),

k2×

如图3

当△OEF∽△EOB时,

EFOB6

F,﹣3),

k2=﹣3×=﹣

综上所述,满足条件的k2值为或﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的顶点AC的坐标分别是(03)、(40).∠ACB=90AC=2BC,则函数y=k>0x>0)的图象经过点B,则k的值为(

A.10B.11C.12D.13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形中,,点是对角线上一动点,将线段绕点顺时针旋转120°,连接,连接并延长,分别交于点

1)求证:

2)已知,若的最小值为,求菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).

1)这次调查中,一共查了   名学生:

2)请补全两幅统计图:

3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过两点,与x轴的另一个交点为C,顶点为D,连结CD

1)求该抛物线的表达式;

2)点P为该抛物线上一动点(与点BC不重合),设点P的横坐标为t

①当点P在直线BC的下方运动时,求的面积的最大值;

②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0).

1)若b1a=﹣c,求证:二次函数的图象与x轴一定有两个不同的交点;

2)若a0c0,且对于任意的实数x,都有y1,求4a+b2的取值范围;

3)若函数图象上两点(0y1)和(1y2)满足y1y20,且2a+3b+6c0,试确定二次函数图象对称轴与x轴交点横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是直经,D的中点,DEACAC的延长线于EO的切线BFAD的延长线于点F

1)求证:DEO的切线.

2)试探究AEADAB三者之间的等量关系.

3)若DE=3O的半径为5,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实党的精准扶贫政策,AB两城决定向CD两乡运送肥料以支持农村生产,已知AB两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往CD两乡运肥料的费用分别为20/吨和25/吨:从B城往CD两乡运肥料的费用分别为15/吨和24/吨,现C乡需要肥料240吨,D乡需要肥料260吨.

1A城和B城各有多少吨肥料?

2)设从A城运往C乡肥料x吨,总运费为y元,求yx的函数关系式.

3)怎样调运才能使总运费最少?并求最少运费.

查看答案和解析>>

同步练习册答案