【题目】如图所示,在四边形ABCD中,AB∥CD,AD//BC,点E,F在对角线AC上,且AE=CF,请你分别以E,F为一端点,和图中已标字母的某点连成两条相等的新线段(只需证明一组线段相等即可).
(1)连接 ;
(2)结论: = ;
(3)证明:
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图: △ABC关于轴对称的图形△;
(2)将点先向上平移个单位,再向右平移个单位得到点的坐标为 ;
(3)△的面积为 ;
(4)若为轴上一点,连接 ,则△周长的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:等腰三角形OAB在直角坐标系中的位置如图,点A的坐标为(-3,3),点B的坐标为(﹣6,0).
(1)若三角形OAB关于y轴的轴对称图形是三角形OA′B′,请直接写出A、B的对称点A′、B′的坐标;
(2)若将三角形OAB沿x轴向右平移a个单位,此时点A恰好落在反比例函数y=的图象上,求a的值;
(3)若三角形OAB绕点O按逆时针方向旋转α度(0<α<90).
①当α=30°时点B恰好落在反比例函数y=的图象上,求k的值;
②问点A、B能否同时落在①中的反比例函数的图象上,若能,求出α的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下,不成立,但有些数可以使得它成立,例如:a=1,b=2.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).
(1)判断数对(﹣2,1),(3,3)是否是“相伴数对”;
(2)若(k,﹣1)是“相伴数对”,求k的值;
(3)若(4,m)是“相伴数对”,求代数式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某一出租车一天下午以鼓楼为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:㎞)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.
⑴将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
⑵若每千米的价格为2.4元,司机一个下午的营业额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若 x 满足 (9x)(x4)=4, 求 (4x)2+(x9)2 的值.
设 9x=a,x4=b, 则 (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,
∴(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13
请仿照上面的方法求解下面问题:
(1)若 x 满足 (5x)(x2)=2, 求 (5x)2+(x2)2 的值
(2)已知正方形 ABCD 的边长为 x , E , F 分别是 AD 、 DC 上的点,且 AE=1 , CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF 、 DF 作正方形,求阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com