【题目】探究:如图①,直线l1∥l2,点A、B在直线l1上,点C、D在直线l2上,记△ABC的面积为S1,△ABD的面积为S2,求证:S1=S2.
拓展:如图②,E为线段AB延长线上一点,BE>AB,正方形ABCD、正方形BEFG均在直线AB同侧,求证:△DEG的面积是正方形BEFG面积的一半.
应用:如图③,在一条直线上依次有点A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直线AB同侧,且点F、H分别是边CG、BI的中点,若正方形CDEF的面积为l,则△AGI的面积为 .
【答案】探究:见解析;拓展:见解析;应用:8
【解析】
探究:利用平行线的性质得到这两个三角形是同底等高的两个三角形,所以它们的面积相等;
拓展:连接BD,根据正方形的性质可知,GE∥BD,△DEG与△BGE同底等高,故S△DEG=S△BEG,可求△DEG的面积是正方形BEFG面积的一半;
应用:利用“拓展”解题思路进行解答.
探究:证明:作CM⊥l1于点M,DN⊥l1于点N,如图①.
∵l1∥l2,
∴CM=DN.
又∵△ABC与△ABD同底,
∴S1=S2;
拓展:证明:连结BD,如图②.
∵四边形ABCD和四边形BEFG均为正方形,
∴∠ABD=∠BEG=45°.
∴BD∥EG.
由探究中的结论可得,S△DEG=S△BEG,
∵S△BEG=S正方形BEFG,
∴S△DEG=S正方形BEFG;
应用:解:由“拓展”可得S△AGI=S正方形ABIJ.
如图③,
∵正方形CDEF的面积为l,
∴CF=.
∵点F、H分别是边CG、BI的中点,
∴BI=4,即正方形ABIJ的边长为4.
∴S正方形ABIJ=16.
∴S△AGI=8.
故答案是:8.
科目:初中数学 来源: 题型:
【题目】在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;
(2)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解市民对全市创文工作的满意程度,娄星区某中学数学兴趣小组在娄底城区范围内进行了抽样调查,将调查结果分为非常满意,满意,一般,不满意四类,回收、整理好全部问卷后,绘制了两幅不完整的统计图1、图2,结合图中信息,回答:
(1)此次共调查了多少名市民?
(2)将两幅统计图中不完整的部分补充完整;
(3)若我市城区共有480000人口,请估算我市对创文工作“非常满意和满意”的市民人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.
(1)求抛物线的解析式;
(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;
(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF不与y轴平行),求证:直线EF恒过某一定点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx﹣t=0(为实数)在﹣1<x<4的范围内有解,则t的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为4,点O是△ABC的外心,∠FOG=120°.绕点O旋转∠FOG,分别交线段AB、BC于D、E两点.连接DE给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③S四边形ODBE=;④△BDE周长的最小值为6.上述结论中正确的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,半径为1的动圆圆心M从A点出发,沿着AB方向以1个单位长度/每秒的速度匀速运动,同时动点N从点B出发,沿着BD方向也以1个单位长度/每秒的速度匀速运动,设运动的时间为t秒(0≤t≤2.5),以点N为圆心,NB的长为半径的⊙N与BD,AB的交点分别为E,F,连结EF,ME.
(1)①当t= 秒时,⊙N恰好经过点M;②在运动过程中,当⊙M与△ABD的边相切时,t= 秒;
(2)当⊙M经过点B时,①求N到AD的距离;②求⊙N被AD截得的弦长;
(3)若⊙N与线段ME只有一个公共点时,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的横坐标是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O外的一点,CB与⊙O相切于点B,AC交⊙O于点D,点E是上的一点(不与点A,B,D重合),若∠C=48°,则∠AED的度数为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com