精英家教网 > 初中数学 > 题目详情

【题目】下列各式与A﹣B+C的值相等的是(
A.A+(﹣B)+(﹣C)
B.A﹣(+B)﹣(+C)
C.A﹣(+B)﹣(﹣C)
D.A﹣(﹣B)﹣(﹣C)

【答案】C
【解析】解:A、∵A+(﹣B)+(﹣C)=A﹣B﹣C, ∴该选项不符合题意;
B、A﹣(+B)﹣(+C)=A﹣B﹣C,
∴该选项不符合题意;
C、A﹣(+B)﹣(﹣C)=A﹣B+C,
∴该选项符合题意;
D、A﹣(﹣B)﹣(﹣C)=A+B+C,
∴该选项不符合题意.
故选C.
【考点精析】本题主要考查了有理数的加减混合运算的相关知识点,需要掌握混合运算法则:先乘方,后乘除,最后加减才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是(  )
A.(﹣4,0)
B.(﹣1,0)
C.(0,2)
D.(2,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

15a5-a2--a4-2a3

2)(a+b-c)(a-b-c-a-b+c2

3xx-2y-y-x2-x+y)(-y+x).

4[xx2y2-xy-yx2-x3y]÷3x2y

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求证:AF平分∠BAC.

【答案】证明见解析.

【解析】试题分析:先根据AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC再易证ABF≌△ACF,从而证出AF平分∠BAC

试题解析:证明:∵AB=AC(已知)

∴∠ABC=ACB(等边对等角).

BDCE分别是高,

BDAC,CEAB(高的定义).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代换).

FB=FC(等角对等边)

ABFACF中,

ABFACF(SSS)

∴∠BAF=CAF(全等三角形对应角相等)

AF平分∠BAC.

型】解答
束】
23

【题目】如图,在△ABC中,AC=BC∠C=90°AD△ABC的角平分线,DE⊥AB,垂足为E

1)求证:CD=BE

2)已知CD=2,求AC的长;

3)求证:AB=AC+CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列多项式分解因式:

(1)3a2﹣12ab+12b2

(2)m2(m﹣2)+4(2﹣m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合肥百大集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:

空调机

电冰箱

甲连锁店

200

170

乙连锁店

160

150

设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).

(1)求y关于x的函数关系式,并求出x的取值范围;

(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,才能使总利润达到最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】﹣1+2﹣3+4﹣5+6+…﹣2015+2016的值等于(
A.1
B.﹣1
C.2016
D.1008

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据统计2017年5月深圳文博会期间,总参观人数达到了6 660 000人次,将6 660 000用科学记数法表示应为
A.666×104
B.6.66×105
C.6.66×106
D.6.66×107

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地区两个城市之间,可乘坐普通列车或高铁.已知高铁行驶线路的路程是400千米,普通列车行驶线路的路程是高铁行驶路程的1.3倍;高铁的平均速度是普通列车平均速度的2.5倍。如果乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.

查看答案和解析>>

同步练习册答案