【题目】某厂按用户的月需求量
(件)完成一种产品的生产,其中
.每件的售价为18万元,每件的成本
(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量
(件)成反比.经市场调研发现,月需求量
与月份
(
为整数,
)符合关系式
(
为常数),且得到了表中的数据.
月份 | 1 | 2 |
成本 | 11 | 12 |
需求量 | 120 | 100 |
(1)求
与
满足的关系式,请说明一件产品的利润能否是12万元;
(2)求
,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第
个月和第
个月的利润相差最大,求
.
【答案】(1)
,不可能;(2)不存在;(3)1或11.
【解析】
试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到
,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
试题解析:(1)由题意设
,由表中数据,得
解得
∴
.
由题意,若
,则
.
∵x>0,∴
.
∴不可能.
(2)将n=1,x=120代入
,得
120=2-2k+9k+27.解得k=13.
将n=2,x=100代入
也符合.
∴k=13.
由题意,得18=6+
,求得x=50.
∴50=
,即
.
∵
,∴方程无实数根.
∴不存在.
(3)第m个月的利润为w=
=
;
∴第(m+1)个月的利润为
W′=
.
若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
∴m=1或11.
科目:初中数学 来源: 题型:
【题目】为了打击信息诈骗和反信息骚扰,深圳移动公司从2015年9月到10月间,共拦截疑似诈骗电话呼叫1298万次,1298万用科学记数法可表示为( )
A.1298×104
B.12.98×106
C.1.298×107
D.1.298×103
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=20cm,AC=12cm,点 P 从点 B 出发以每秒 3cm 的速度向点 A 运动,点 Q 从点 A 同时出发以每秒 2cm 的速度向点 C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以 PQ 为底的等腰三角形时,运动的时间是( )![]()
A.2.5 秒
B.3 秒
C.3.5 秒
D.4 秒
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com