精英家教网 > 初中数学 > 题目详情

【题目】如图①是一个长为2m.宽为2n的长方形,沿图中虚线用剪刀均匀分成四块小长方形,然后按图②形状拼成一个正方形.

1)你认为图②中的阴影部分的正方形的边长等于________

2)请用两种不同的方法求图②中阴影部分的面积.(不用化简)

方法1___________;方法2___________

3)由问题(2)你能写出三个代数式:mn之间的一个等量关系.

答:______________

4)根据(3)题中的等量关系和完全平方公式,解决如下问题:

①已知:m+n5mn=-3,求:(mn2的值;

②已知mn5,求mn的值.

【答案】1;(2;(3;(4)①37;②47

【解析】

1)根据拼图的方式即可得出阴影部分的正方形的边长;

2)根据面积公式以及间接法,即可得到图中阴影部分的面积的不同代数式;

3)根据两种不同的方法表示图中阴影部分的面积相等,即可得到(m+n2、(mn2mn之间的等量关系;

4利用(3)中的等量关系,把m+n5mn=-3代入计算即可;

由完全平方差公式变形,再把mn5代入计算即可.

1)由题意可知:图中的阴影部分的正方形的边长为mn

2)由题意可知:两种不同的方法表示图中阴影部分的面积分别为:

方法1;方法2

3)由问题(2)可知:

4解:∵m+n5mn=-3

=

=25+12

=37

解:∵mn5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,下列能判定AB∥CD的条件有( )个.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列7个事件中:(1)掷一枚硬币,正面朝上.(2)从一副没有大小王的扑克牌中抽出一张恰为黑桃.(3)随意翻开一本有400页的书,正好翻到第100页.(4)天上下雨,马路潮湿.(5)你能长到身高4.(6)买奖券中特等大奖.(7)掷一枚正方体骰子,得到的点数<7.其中(将序号填入题中的横线上即可)确定事件为________;不确定事件为________;不可能事件为________;必然事件为________;不确定事件中,发生可能性最大的是________,发生可能性最小的是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校在一次环保知识宣传活动中,需要印刷若干份调查问卷。印刷厂有甲、乙两种收费方式:甲种方式收制版费6,每一份收印刷费0.1元;乙种方式不收制版费,每印一份收印刷费0.12元。设共印调查问卷份:

(1)按甲种方式应收费多少元,按乙种方式应收费多少元(用含的代数式表示)

(2)若共需印刷500份调查问卷,通过计算说明选用哪种方式合算?

(3)印刷多少份调查问卷时,甲、乙两种方式收费一样多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是( )
A. =±5
B. =﹣3
C.± =±6
D. =﹣10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形.

(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗 ”若成立,请写出证明过程;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列图形中,既是轴对称图形,又是中心对称图形的是(
A.直角三角形
B.正五边形
C.正方形
D.平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);

(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;

(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小东设计的“作边上的高线”的尺规作图过程.

已知:.

求作:边上的高线.

作法:如图,

①以点为圆心,的长为半径作弧,以点为圆心,的长为半径作弧,两弧在下方交于点

②连接于点.

所以线段边上的高线.

根据小东设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵   

∴点分别在线段的垂直平分线上(  )(填推理的依据).

垂直平分线段.

∴线段边上的高线.

查看答案和解析>>

同步练习册答案