精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.                          

1.请写出旋转中心的坐标是            ,旋转角是      度;

2.以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;

3.设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.

 

【答案】

 

1.O(0,0) 90度

2.见解析

3.见解析

【解析】(1)图象的旋转可以利用某点的旋转来找到旋转的角度和旋转中心;

(2)根据旋转角度为依次90°、180°,旋转方向为顺时针,旋转中心为点O,从而可分、找出各点的对应点,然后顺次连接即可分别得出旋转后的三角形.

(3)利用正方形的面积的不同计算方法进行验证勾股定理.

解:(1)旋转中心坐标是O(0,0),旋转角是90度;…2分

(2)画出的图形如图所示;…6分

(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.

∵S正方形CC1C2C3=S正方形AA1A2B+4SABC,

∴(a+b)2=c2+4×ab,

即a2+2ab+b2=c2+2ab,

∴a2+b2=c2

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案