精英家教网 > 初中数学 > 题目详情

【题目】某商店销售一种商品,童威经市场调查发现:该商品的周销售量(件)是售价(元/件)的一次函数,其售价、周销售量、周销售利润(元)的三组对应值如下表:

售价(元/件)

50

60

80

周销售量(件)

100

80

40

周销售利润(元)

1000

1600

1600

注:周销售利润=周销售量×(售价-进价)

1)①求关于的函数解析式(不要求写出自变量的取值范围)

②该商品进价是_________/件;当售价是________/件时,周销售利润最大,最大利润是__________

2)由于某种原因,该商品进价提高了/,物价部门规定该商品售价不得超过65/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求的值

【答案】(1)①的函数关系式是②40701800;(25.

【解析】

(1)①设的函数关系式为,根据表格中的数据利用待定系数法进行求解即可;

②设进价为a元,根据利润=售价-进价,列方程可求得a的值,根据“周销售利润=周销售量×(售价-进价)”可得w关于x的二次函数,利用二次函数的性质进行求解即可得;

(2)根据“周销售利润=周销售量×(售价-进价)”可得,进而利用二次函数的性质进行求解即可.

(1)①设的函数关系式为,将(50100)(6080)分别代入得,

,解得,

的函数关系式是

②设进价为a元,由售价50元时,周销售是为100件,周销售利润为1000元,得

100(50-a)=1000

解得:a=40

依题意有,

=

=

∴当x=70时,w有最大值为1800

即售价为70/件时,周销售利润最大,最大为1800元,

故答案为:40701800

(2)依题意有,

对称轴

抛物线开口向下,

的增大而增大,

时,有最大值

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+b与反比例函数y.(其中mk0)图象交于A(﹣42),B2n)两点.

1)求一次函数和反比例函数的表达式;

2)求△ABO的面积;

3)请直接写出当一次函数值大于反比例函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是

(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;

(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数是常数,)的自变量与函数值的部分对应值如下表:

0

1

2

且当时,与其对应的函数值.有下列结论:①;②3是关于的方程的两个根;③.其中,正确结论的个数是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,用一根长度为18米的原材料制作一个矩形窗户边框(即矩形ABFE和矩形DCFE),原材料刚好全部用完,设窗户边框AB长度为x米,窗户总面积为S平方米(注:窗户边框粗细忽略不计).

1)求Sx之间的函数关系式;

2)若窗户边框AB的长度不少于2米,且边框AB的长度小于BC的长度,求此时窗户总面积S的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=kx+bk≠0)的图象经过点B20),与函数y=2x的图象交于点A,则不等式0kx+b2x的解集为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示抛物线过点,点,且

1)求抛物线的解析式及其对称轴;

2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;

3)点为抛物线上一点,连接,直线把四边形的面积分为35两部分,求点的坐标.

查看答案和解析>>

同步练习册答案