精英家教网 > 初中数学 > 题目详情
3.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:
①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.
其中会随点P的移动而变化的是(  )
A.②③B.②⑤C.①③④D.④⑤

分析 根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=$\frac{1}{2}$AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.

解答 解:∵点A,B为定点,点M,N分别为PA,PB的中点,
∴MN是△PAB的中位线,
∴MN=$\frac{1}{2}$AB,
即线段MN的长度不变,故①错误;
PA、PB的长度随点P的移动而变化,
所以,△PAB的周长会随点P的移动而变化,故②正确;
∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,
∴△PMN的面积不变,故③错误;
直线MN,AB之间的距离不随点P的移动而变化,故④错误;
∠APB的大小点P的移动而变化,故⑤正确.
综上所述,会随点P的移动而变化的是②⑤.
故选:B.

点评 本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A到最高点B的距离为10$\sqrt{3}$,A,B两点正前方有垂直于地面的旗杆DE.在A,B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°(仰角即视线与水平线的夹角)
(1)求AE的长;
(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在数轴上标注了四段范围,如图,则表示$\sqrt{8}$的点落在(  )
A.段①B.段②C.段③D.段④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下面四个几何体中,俯视图为四边形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在矩形ABCD中,对角线AC,BD相交于点O,E是边AD的中点.若AC=10,DC=2$\sqrt{5}$,则BO=5,∠EBD的大小约为18度26分.(参考数据:tan26°34′≈$\frac{1}{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.a6÷a2=a4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为61°.

查看答案和解析>>

同步练习册答案