精英家教网 > 初中数学 > 题目详情

【题目】阅读:对于所有的一元二次方程ax2+bx+c0a≠0)中,对于两根x1x2,存在如下关系:x1+x2x1x2.试着利用这个关系解决问题.设方程2x25x30的两根为x1x2,不解方程,求下列式子的值:2x12+4x22+5x1

【答案】34

【解析】

根据一元二次方程的解的定义可得关于x1x2的等式,然后代入所求式子降次化简后可得关于x1+x2的式子,由阅读材料可得x1+x2的值,再整体代入计算即可.

解:∵方程2x25x30的两个根为x1x2

2x125x1302x225x230,即2x125x1+32x225x2+3

∴原式=5x1+3+25x2+3+5x110x1+x2+9

x1+x2,∴原式=10×+934

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°AC4BC3.在RtABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画出草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图内接于的两条切线,已知,则的弧度数为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF1.6m,请你帮李航求出楼高AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2018年平昌冬奥会在29日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.

对冬奥会了解程度的统计表

对冬奥会的了解程度

百分比

A非常了解

10%

B比较了解

15%

C基本了解

35%

D不了解

n%

(1)n=   

(2)扇形统计图中,D部分扇形所对应的圆心角是   

(3)请补全条形统计图;

(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从非常了解程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:ADABC的角平分线,DE//ACABEDF//ABACF,

1)求证:四边形AEDF是菱形;

2)当ABC满足什么条件时,四边形AEDF是正方形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小宇将两张长为8宽为2的矩形条交叉如图①,发现重叠部分可能是一个菱形.

1)请你帮助小宇证明四边形ABCD是菱形.

2)小宇又发现:如图②时,菱形ABCD的周长最小,等于   

3)如图③时菱形ABCD的周长最大,求此时菱形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两地相距50千米.星期天上午800小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程(千米)与小聪行驶的时间(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以D为顶点的抛物线y=﹣x2+bx+cx轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.

(1)求抛物线的表达式;

(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;

(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案