精英家教网 > 初中数学 > 题目详情

【题目】甲乙两地相距50千米.星期天上午800小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程(千米)与小聪行驶的时间(小时)之间的函数关系如图所示,小明父亲出发多少小时,行进中的两车相距8千米.

【答案】出发小时时,行进中的两车相距8千米.

【解析】

根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.

解:由图可知,小聪及父亲的速度为:千米/时,

小明的父亲速度为:千米/时,

设小明的父亲出发小时两车相距8千米,则小聪及父亲出发的时间为小时.

根据题意得:

解得

所以,出发小时时,行进中的两车相距8千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于任意三点ABC,给出如下定义:

若矩形的任何一条边均与某条坐标轴平行,且ABC三点都在矩形的内部或边界上,则称该矩形为点ABC的外延矩形.点ABC的所有外延矩形中,面积最小的矩形称为点ABC的最佳外延矩形.例如,图中的矩形都是点ABC的外延矩形,矩形是点ABC的最佳外延矩形.

1)如图1,已知A(-20),B43),C0).

,则点ABC的最佳外延矩形的面积为

若点ABC的最佳外延矩形的面积为24,则的值为

2)如图2,已知点M60),N08).P)是抛物线上一点,求点MNP的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;

3)如图3,已知点D11).E)是函数的图象上一点,矩形OFEG是点ODE的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读:对于所有的一元二次方程ax2+bx+c0a≠0)中,对于两根x1x2,存在如下关系:x1+x2x1x2.试着利用这个关系解决问题.设方程2x25x30的两根为x1x2,不解方程,求下列式子的值:2x12+4x22+5x1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

1)若此方程的一个根为1,求的值;

2)求证:不论取何实数,此方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象经过点(0,1),对称轴为直线x=﹣1,下列结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中,正确结论的个数为(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式: ……

根据上面等式反映的规律,解答下列问题:

1)请根据上述等式的特征,在括号内填上同一个实数: -5=

2)小明将上述等式的特征用字母表示为:为任意实数).

①小明和同学讨论后发现:的取值范围不能是任意实数.请你直接写出不能取哪些实数.

②是否存在两个实数都是整数的情况?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图2211抛物线yax2+2axc(a>0)y轴交于点C,与x轴交于AB两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;

(3)抛物线线上是否存在一点P,使,若存在,请求出点的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数进行了探究学习,请根据他们的对话解答问题.

(1)张明:,我能求出直线与轴的交点坐标为 ;

李丽:,我能求出直线与坐标轴围成的三角形的面积为 ;

(2)王林:根据你们的探究,我发现无论取何值,直线总是经过一个固定的点,请求出这个定点的坐标.

(3)赵老师:我来考考你们,如果点的坐标为,该点到直线的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?

查看答案和解析>>

同步练习册答案