精英家教网 > 初中数学 > 题目详情
17.如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B′恰好落在DA的延长线上,且PB′⊥AD,若CD=3,BC=4,则BP的长度为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{3}{4}$D.$\frac{5}{4}$

分析 由由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD中,PB′⊥AD,求得△B′CD是直角三角形,继而求得DB′的长,然后设BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.

解答 解:由折叠的性质可得:PB′=PB,∠PB′C=∠B,
∵四边形ABCD是平行四边形,PB′⊥AD,
∴∠B=∠D,∠PB′A=90°,
∴∠D+∠CB′D=90°,
∴∠DCB′=90°,
∵CD=3,BC=4,
∴AD=B′C=BC=4,
∴DB′=$\sqrt{C{D}^{2}+CB{′}^{2}}$=5,
∴AB′=DB′-AD=1,
设BP=x,则PB′=x,PA=3-x,
在Rt△AB′P中,PA2=AB′2+PB′2
∴x2+12=(3-x)2
解得:x=$\frac{4}{3}$,
∴BP=$\frac{4}{3}$,
故选A.

点评 此题考查了折叠的性质、平行四边形的性质以及勾股定理.注意掌握折叠前后图形的对应关系是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图1,是一个长为2m、宽为2n的长方形,沿图中虚线剪成四个完全一样的小长方形,然后按图2的形状拼成一个正方形.

(1)图2中阴影部分的面积为(m-n)2或(m+n)2-4mn;
(2)用两种不同的方法计算图2中阴影部分的面积,可以得到的等式是③(只填序号);
①(m+n)2=m2+2mn+n2 ②(m-n)2=m2-2mn+n2   ③(m-n)2=(m+n)2-4mn
(3)若x-y=-4,xy=$\frac{9}{4}$,则x+y=±5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列运算正确的是(  )
A.-2x(3x2y-2xy)=-6x2y-4x2yB.2x2y(-x2+2y+1)=-4x3y4
C.(3ab2-2ab)abc=3a2b2-2a2b2D.(ab)2(2ab2c)=2a3b4c

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在菱形ABCD中,点E是BC的中点,连接DE并延长与AB的延长线交于点F.
(1)求证:△DEC≌△FEB;
(2)若DF⊥BC,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.图1⊙O中,△ABC和△DCE是等腰直角三角形,且△ABC内接于⊙O,∠ACB=∠DCE=90°,连接AE、BD,点D在AC上.

(1)线段AE与BD的数量关系为相等,位置关系为垂直;
(2)如图2若△DCE绕点C逆时针旋转α(0°<α<90°),记为△D1CE1
①当边CE所在直线与⊙O相切时,直接写出α的值;
②求证:AE1=BD1
(3)如图3,若M是线段BE1的中点,N是线段AD1的中点,求证:MN=$\sqrt{2}$OM.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,直线AB,CD相交于点O,OE⊥CD,∠BOE=58°,则∠AOC等于(  )
A.58°B.42°C.32°D.22°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连接CD,DE.
(1)求证:DE是⊙O的切线;
(2)若BD=4,CD=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)解方程:$\frac{1-x}{x-2}$=$\frac{1}{2-x}$+1
(2)先化简,再求值:(1+$\frac{1}{x-2}$)÷$\frac{{x}^{2}-2x+1}{{x}^{2}-4}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,点A是双曲线y=$\frac{8}{x}$在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为(  )
A.y=$\frac{8}{x}$B.y=$\frac{16}{x}$C.y=-$\frac{16}{x}$D.y=-$\frac{8}{x}$

查看答案和解析>>

同步练习册答案