精英家教网 > 初中数学 > 题目详情
3.如图,在7×7网格中,每个小正方形的边长都为1.
(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为(-2,-1);
(2)△ABC的面积为5;
(3)判断△ABC的形状,并说明理由.

分析 (1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;
(2)利用矩形的面积减去三个直角三角形的面积求解;
(3)利用勾股定理的逆定理即可作出判断.

解答 解:(1)

则B的坐标是(-2,-1).
故答案是(-2,-1);
(2)S△ABC=4×4-$\frac{1}{2}$×4×2-$\frac{1}{2}$×3×4-$\frac{1}{2}$×1×2=5,
故答案是:5;
(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,
∴AC2+BC2=AB2
∴△ABC是直角三角形,∠ACB=90°.

点评 本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,两个形状、大小完全相同的大长方形内放入四个如图③的小长方形后分别得到如图①、图②,已知大长方形的长为a,则图②阴影部分周长与图①阴影部分周长的差是(  )
A.aB.$\frac{a}{3}$C.$\frac{2}{3}$aD.$\frac{a}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.一次函数y=mx+|m-1|的图象过点(0,2),且y随x的增大而减小,则m的值为(  )
A.-1B.1C.3D.-1或3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.【结论】已知两条直线l1:y=k1x+b1,l2:y=k2x+b2,若l1⊥l2,则有k1•k2=-1,反之也成立.
【应用】(1)已知y=3x+1与y=kx-1垂直,求k的值;
(2)已知直线m经过点A(2,3),且与y=$-\frac{1}{2}$x+3垂直,求直线m的解析式.
【探究】(3)在同一直角坐标系上,给定4个点A(1,3)、B(-3,0)、C(0,-4)和D(4,-1),任意连接其中两点能得到多少条不同的直线?这些直线中共有多少组互相垂直关系?并选择其中一组互相垂直关系进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.课堂上,老师给出了一个只含字母x的多项式,并让同学们描述这个多项式的特征,以下是两位同学的描述,根据这些描述,请写出一个符合条件的多项式3x3-3x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知等边△ABC和Rt△DEF按如图1所示的位置放置,点B、D重合,且点E、B(D)、C在同一条直线上,其中∠DEF=90°,∠EDF=30°,AB=DE=6$\sqrt{3}$,现将△DEF沿直线BC以每秒$\sqrt{3}$个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t秒(t>0).

(1)试求出在平移过程中,点F落在△ABC的边上时的t值;
(2)直接写出在平移过程中△ABC和Rt△DEF重叠部分的面积S与t的函数关系式;
(3)当D与C重合时(如图2),将△DEF绕点E顺时针旋转一个角α(0°<α<360°),记旋转中△DEF为△D′E′F′,在旋转过程中,设D′F′所在直线与直线AC交于点H,与直线AB交于点G,是否存在这样的G、H两点,使△AGH为等腰三角形?若存在,求出此时AH的长度;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.松雷中学九年级某班学生李明为帮助同桌张华巩固“坐标”这一基础知识,他在三张完全相同且不透明的卡片正面分别写上了-3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,然后放回,再从中随机取出一张,将卡片上的数字记为b,然后写出点M(a,b)的坐标.
(1)请你用树状图帮该同学进行分析,并写出点M所有可能的坐标;
(2)求点M在第二象限的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列命题①如果x2=1,则x=1   ②2是4的平方根    ③有两边和一角相等的两个三角形全等  ④若a2=b2,则a=b 其中真命题有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若a、b互为倒数,则-$\frac{2}{3}$ab=-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案