【题目】如图,点A(-10,0),B(-6,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(8,0)出发,沿x轴向左以每秒1个单位长的速度向点A匀速运动,运动时间为t秒.
(1)求点C的坐标.
(2)当∠BCP=15°时,求t的值.
(3)以PC为直径作圆,当该圆与四边形ABCD的边(或边所在的直线)相切时,求t的值.
【答案】(1)C(0,6);(2)8+2或8+6;(3)2或8或17.1
【解析】
试题分析:(1)根据∠BOC=90°,∠CBO=45°得出∠BCO=∠CBO=45°,从而得出点C的坐标;(2)根据当点P在点B右侧和当点P在点B左侧两种情况分别进行计算,得出答案;(3)根据圆与BC相切、圆与CD相切和圆与AD相切三种情况分别进行计算,得出答案.
试题解析:(1)∵∠BOC=90°,∠CBO=45°,∴∠BCO=∠CBO=45°,
∵B(-6,0),∴OC=OB=6,∴C(0,6);
(2)①当点P在点B右侧时,∵∠BCO=45°,∠BCP=15°,∴∠POC=30°,
∴OP=2 ∴t1=8+2
②当点P在点B左侧时,∵∠BCO=45°,∠BCP=15°,∴∠POC=60°,
∴OP=6 ∴t2=8+6
综上所述:t的值为8+2或8+6.
(3)由题意知,若该圆与四边形ABCD的边相切,有以下三种情况:
①当该圆与BC相切于点C时,有∠BCP=90°, 从而∠OCP=45°,得到OP=6,此时PQ=2,∴t=2;
②当该圆与CD相切于点C时,有PC⊥CD,即点P与点O重合, 此时PQ=8,∴t=8;
③当该圆与AD相切时,设P(8-t,0),设圆心为M,则M(,3),半径r=
作MH⊥AD于点H,则MH=-(-10)=14-,
当MH2=r2时,得(14-)2=()2+32,解得t=17.1
∴t的值为2或8或17.1.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( )
A. ﹣1≤x≤9 B. ﹣1≤x<9 C. ﹣1<x≤9 D. x≤﹣1或x≥9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.
(1)求证:四边形AECF是平行四边形;
(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(满分10分)如图,直径为AB的⊙O交的两条直角边BC、CD于点E、F,且,连接BF.
(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求AD长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).
(1)求出m的值,并画出这条抛物线;
(2)求抛物线与x轴的交点和顶点坐标;
(3)当x取什么值时,抛物线在x轴上方?
(4)当x取什么值时,y的值随x的增大而减小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).
(1)直接写出每天游客居住的房间数量y与x的函数关系式.
(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com