【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动.已知点A的速度是1单位长度/秒,点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求请在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点在(1)中的位置,数轴上是否存在一点P到点A,点B的距离之和为16,并求出此时点P表示的数;若不存在,请说明理由.
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以10单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
【答案】(1)点A表示的数为﹣3,点B表示的数为12,图见解析;(2)数轴上存在一点P到点A,点B的距离之和为16,此时点P表示的数为﹣或;(3)点C从开始运动到停止运动,行驶的路程是50个单位长度.
【解析】
(1)由点A,B的运动速度、运动方向及运动时间,可求出出发运动3秒时点A,B表示的数;
(2)设点P表示的数为x,分x<﹣3,﹣3≤x≤12及x>12三种情况考虑,由PA+PB=16,即可得出关于x的一元一次方程,解之即可得出结论;
(3)设点B需用t秒钟才可追上点A,根据两点的速度之差×运动时间=两点间的距离,即可得出关于t的一元一次方程,解之即可得出t值,再结合点C的运动速度,即可求出点C从开始运动到停止运动行驶的路程.
解:(1)∵﹣1×3=﹣3,4×3=12,
∴出发运动3秒时,点A表示的数为﹣3,点B表示的数为12,
将其标记在数轴上,如图所示;
(2)设点P表示的数为x.
当x<﹣3时,(﹣3﹣x)+(12﹣x)=16,
解得:x=﹣;
当﹣3≤x≤12时,x﹣(﹣3)+(12﹣x)=15≠16,
∴方程无解;
当x>12时,x﹣(﹣3)+(x﹣12)=16,
解得:x=;
综上所述:数轴上存在一点P到点A,点B的距离之和为16,此时点P表示的数为﹣或;
(3)设点B需用t秒钟,才可追上点A,
根据题意得:(4﹣1)t=12﹣(﹣3),
解得:t=5,
∴10t=50.
答:点C从开始运动到停止运动,行驶的路程是50个单位长度.
科目:初中数学 来源: 题型:
【题目】一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )
A.3,3,0.4
B.2,3,2
C.3,2,0.4
D.3,3,2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天.
A. 10 B. 20 C. 30 D. 25
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其 余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:
(1)菜地的长a= m,宽b= m;
(2)菜地面积S= m2;
(3)当x=0.5m时,菜地面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB、CD、EF相交于点O,EF⊥AB,OG为∠COF的平分线,OH为∠DOG的平分线.
(1)若∠AOC∶∠COG=4∶7,求∠DOF的大小;
(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.
(1)求经过A,B,C三点的抛物线的函数表达式;
(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;
(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、G为顶点的四边形是正方形时,请求出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com