精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,AB=2 cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.

【答案】4
【解析】解:在ABCD中,∵AB=CD=2 cm,AD=BC=4cm,AO=CO,BO=DO,
∵AC⊥BC,
∴AC= =6cm,
∴OC=3cm,
∴BO= =5cm,
∴BD=10cm,
∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm,
故答案为:4.

根据平行四边形的性质得到AB=CD=2 cm,AD=BC=4cm,AO=CO,BO=DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6B是数轴上一点,且AB10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为tt0)秒.

1)写出数轴上点B表示的数   ;当t3时,OP   

2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点PR同时出发,问点R运动多少秒时追上点P

3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点PR同时出发,问点R运动多少秒时PR相距2个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:

A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2

∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2

对于上述的两个判断,下列说法正确的是(  )

A. 正确,错误 B. 错误,正确 C. ①,②都错误 D. ①,②都正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(  )

A.10cm
B.15cm
C.10 cm
D.20 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知ABC中,D为BC上一点,E为ABC外部一点,DE交AC于一点O,AC=AE,AD=AB,∠BAC=∠DAE.

(1)求证:△ABC≌△ADE;

(2)若BAD=20°,求CDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某运算程序该程序是循环迭代的一种根据该程序的指令,如果输入的值是10,那么得到第1次输出的值是5;把第1次输出的值再次输入,那么第2次输出的值是6;把第2次输出的值再次输入,那么第3次输出的值是3;…,第2018次输出的值是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动.已知点A的速度是1单位长度/秒,点B的速度是点A的速度的4倍(速度单位:单位长度/秒).

(1)求请在数轴上标出AB两点从原点出发运动3秒时的位置;

(2)若AB两点在(1)中的位置,数轴上是否存在一点P到点A,点B的距离之和为16,并求出此时点P表示的数;若不存在,请说明理由.

(3)若AB两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以10单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某开发商进行商铺促销,广告上写着如下条款:

购买商铺后,都由开发商代为租赁10年,10年期满后再由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:

方案一投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的5%.

方案二:投资者按商铺标价的八五折一次性付清铺款,4年后每年可以获得的租金为商铺标价的5%,但要缴纳租金的10%作为管理费用.

(1)请问:投资者选择哪种购铺方案,10年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)

(2)(列方程求解)某投资者按方案一购买商铺,因资金周转,决定向银行贷铺款的20%并于一年后付清贷款,已知贷款年利率为5%.那么10年后该投资者获得55.2万元的收益,问铺款是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E.F在射线AC与射线CB上运动,且满足AE=CF;当点E运动到与点C的距离为1时,则△DEF的面积为___________.

查看答案和解析>>

同步练习册答案