【题目】已知的斜边,.
以点为圆心,当半径为多长时,与相切;
以点为圆心,长为半径作,若以厘米/秒的速度沿由向移动,经过多长时间与相切?
【答案】(1)相切(2)相切
【解析】
(1)过点C作CD垂直于AB,根据直线与圆相切时,圆心到直线的距离等于圆的半径,可得出圆C与AB相切时,CD为此时圆C的半径,在直角三角形ABC中,由AB及AC的长,利用勾股定理求出BC的长,由直角三角形的面积可以由斜边AB与高CD乘积的一半来,也可以由两直角边乘积的一半来求,可得出CD的长,即为AB与圆C相切时的半径;
(2)如图所示,当圆心C与点E重合时,圆C与AB相切,切点为点F,连接EF,由切线的性质得到EF垂直于AB,且EF等于圆C的半径,由一对直角相等,且一对公共角相等,根据两对对应角相等的两三角形相似,可得出三角形BEF与三角形ABC相似,由相似得比例,将AC,AB,EF的长代入求出EB的长,再由CB-EB求出CE的长,即为圆心C运动的路程,用路程除以速度,即可求出圆C与AB相切时所用的时间.
过作,交于点,如图所示:
的斜边,,
根据勾股定理得:,
∵,
∴,
则以点为圆心,当半径为时,与相切;当点与重合时,与相切,如图所示:
连接,则且,又,
∴,又,
∴,
∴,又,,,
∴,
∴,又点的速度为厘米/秒,
∴点运动的时间为(秒),
则经过秒与相切.
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,求△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图l、图2和图3所示(阴影部分为草坪).
请你根据这一问题,在每种方案中都只列出方程不解.
①甲方案设计图纸为图l,设计草坪的总面积为600平方米.
②乙方案设计图纸为图2,设计草坪的总面积为600平方米.
③丙方案设计图纸为图3,设计草坪的总面积为540平方米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(x,0),B(0,y),且x,y满足,且点A与点C关于y轴对称.
(1)求C坐标;
(2)如图1,点D在射线BA上,连接CD,若b=4,∠D=∠CBA,求CD长
(3)如图2,如图2,BC=2OC,点Q是平面内一点,连接 QB,QC,QA,若QB=m,QC=OA,求AQ最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是( )
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com