分析 由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质,得∠ECD=$\frac{1}{2}$(∠A+∠ABC),∠EBC=$\frac{1}{2}$∠ABC,利用等量代换,即可求得∠A与∠E的关系,即可得到结论.
解答 证明:∵∠ACD=∠A+∠ABC,
∴∠ECD=$\frac{1}{2}$(∠A+∠ABC).
又∵∠ECD=∠E+∠EBC,
∴∠E+∠EBC=$\frac{1}{2}$(∠A+∠ABC).
∵BE平分∠ABC,
∴∠EBC=$\frac{1}{2}$∠ABC,
∴$\frac{1}{2}$∠ABC+∠E=$\frac{1}{2}$(∠A+∠ABC),
∴∠E=$\frac{1}{2}$∠A=$\frac{1}{2}×$36°=18°.
点评 本题考查了三角形的内角和,三角形外角的性质,三角形的角平分线性质,解答的关键是理清各角之间的关系.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{{a}^{5}b}{(a-b)^{3}}$ | B. | $\frac{{a}^{6}{b}^{3}}{{a}^{3}-{b}^{3}}$ | C. | $\frac{{a}^{6}{b}^{3}}{(a-b)^{3}}$ | D. | $\frac{{a}^{5}{b}^{3}}{{a}^{3}-{b}^{3}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $2\sqrt{3}+4\sqrt{2}=6\sqrt{5}$ | B. | $\sqrt{{{(-3)}^2}}=-3$ | C. | $\sqrt{27}÷\sqrt{3}=3$ | D. | $3\sqrt{3}×2\sqrt{2}=3\sqrt{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com