【题目】如图,为测量瀑布AB的高度,测量人员在瀑布对面山上的D点处测得瀑布顶端A点的仰角是,测得瀑布底端B点的俯角是,AB与水平面垂直又在瀑布下的水平面测得,注:C、G、F三点在同一直线上,于点,斜坡,坡角(参考数据:,,,,,,)
求测量点D距瀑布AB的距离精确到;
求瀑布AB的高度精确到
【答案】(1)60.0米;(2)45.4米.
【解析】
(1)如图,作DM⊥AB于M,DN⊥EF于N.在Rt△DCN中,求出CN即可解决问题.
(2)利用解直角三角形分别求出AM,BM即可解决问题.
解:(1)如图,作DM⊥AB于M,DN⊥EF于N.
在Rt△DCN中,CN=CDcos40°=20.0×0.77=15.4(米),
∵CF=CG+GF=44.6(米),
∴FN=CN+CF=60.0(米),
∵四边形DMFN是矩形,
∴DM=FN=60.0(米).
(2)在Rt△ADM中,AM=DMtan30°=60.0× =34.6(米),
在Rt△DMB中,BM=DMtan10°=60.0×0.18=10.8(米),
∴AB=AM+BM=45.4(米).
故答案为:(1)60.0米;(2)45.4米.
科目:初中数学 来源: 题型:
【题目】某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A—C—D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A—B—D相交于点N,设运动时间为t秒:
(1)当点M在AC上时,BN=_____.(用含t的代数式表示)
(2)过N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值
(3)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,,,,于点D,将绕点B顺时针旋转得到
如图2,当时,求点C、E之间的距离;
在旋转过程中,当点A、E、F三点共线时,求AF的长;
连结AF,记AF的中点为P,请直接写出线段CP长度的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在将式子(m>0)化简时,
小明的方法是:===;
小亮的方法是: ;
小丽的方法是:.
则下列说法正确的是( )
A. 小明、小亮的方法正确,小丽的方法不正确
B. 小明、小丽的方法正确,小亮的方法不正确
C. 小明、小亮、小丽的方法都正确
D. 小明、小丽、小亮的方法都不正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程有实数根.
(1)求m的值;
(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿补偿额批发价生产成本价销售量大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量件与销售单价元之间的关系近似满足一次函数:已知这种节能灯批发价为每件12元,设它的生产成本价为每件m元
(1)当时.
①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元?
②设所获得的利润为元,当销售单价定为多少元时,每月可获得最大利润?
(2)物价部门规定,这种节能灯的销售单价不得超过30元今年三月小明获得赢利,此时政府给该企业补偿了920元,若m,x都是正整数,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com