【题目】完成下面的证明:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,
求证:∠EGF=90°.
证明:∵AB∥GH(已知),
∴∠1=∠3( ),
又∵CD∥GH(已知),
∴ (两直线平行,内错角相等)
∵AB∥CD(已知),
∴∠BEF+ =180°(两直线平行,同旁内角互补)
∵EG平分∠BEF(已知),
∴∠1= (角平分线定义),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD( ),
∴∠1+∠2=( +∠EFD)
∴∠l+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠EGF=90°.
【答案】两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF
【解析】
依据平行线的性质和判定定理以及角平分线的定义,结合解答过程进行填空即可.
∵AB∥GH(已知),
∴∠1=∠3(两直线平行,内错角相等),
又∵CD∥GH(已知),
∴∠2=∠4(两直线平行,内错角相等)
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补)
∵EG平分∠BEF(已知)
∴∠1=∠BEF(角平分线定义),
又∵FG平分∠EFD(已知),
∴∠2=∠EFD(角平分线定义),
∴∠1+∠2=(∠BEF+∠EFD)
∴∠1+∠2=90°,
∴∠3+∠4=90°(等量代换),
即∠EGF=90°.
故答案为:两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF.
科目:初中数学 来源: 题型:
【题目】如图,直线AB的解析式为,抛物线与y轴交于点A,与x轴交于点,点P是抛物线上一动点,设点P的横坐标为m.
求抛物线的解析式;
如图,当点P在第一象限内的抛物线上时,求面积的最大值,并求此时点P的坐标;
过点A作直线轴,过点P作于点H,将绕点A顺时针旋转,使点H的对应点恰好落在直线AB上,同时恰好落在坐标轴上,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象与轴分别交于A(1,0),B(3,,0)两点,与轴交于点C.
(1)求此二次函数解析式;
(2)点D为抛物线的顶点,试判断的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,若MN=2,则NF=___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ ABC中,∠ ABC=90°,AB=BC,D在边 AC上,AE┴ BD于 E.
(1) 如图 1,作 CF⊥ BD于 F,求证:CF-AE=EF;
(2) 如图 2,若 BC=CD,求证:BD=2AE ;
(3) 如图3,作 BM ⊥BE,且 BM=BE,AE=2,EN=4,连接 CM交 BE于 N,请直接写出△BCM的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:
(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.
(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com