【题目】如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB、CD与x轴平行,边AD、BC与x轴平行,点B、C的坐标分别为B(a,1),C(a,c),且a、c满足关系式.c=++3
(1)求B、C、D三点的坐标;
(2)怎样平移,才能使A点与原点重合?平移后点B、C、D的对应分别为B1C1D1 , 求四边形OB1C1D1的面积;
(3)平移后在x轴上是否存在点P,连接PD,使S△COP=S四边形OBCD?若存在这样的点P,求出点P的坐标;若不存在,试说明理由.
【答案】解:(1)由题意得,a﹣6≥0且6﹣a≥0,
所以,a≥6且a≤6,
所以,a=6,
c=3,
所以,点B(6,1),C(6,3),
∵长方形ABCD的边AB、CD与x轴平行,边AD、BC与x轴平行,
∴点D(2,3);
(2)∵平移后A点与原点重合,
∴平移规律为向左2个单位,向下1个单位,
∴B1(4,0),C1(4,2),D1(0,2);
(3)平移后点C到x轴的距离为2,
∵S△COP=S四边形OBCD ,
∴×OP×2=4×2,
解得OP=8,
若点P在点O的左边,则点P的坐标为(﹣8,0),
若点P在点O的右边,则点P的坐标为(8,0).
综上所述,存在点P(﹣8,0)或(8,0).
【解析】(1)根据被开方数非负数列式求出a,然后求出c,即可得到点B、C的坐标,再根据矩形的性质,点D的横坐标与点A的横坐标相同,纵坐标与点C的纵坐标相同;
(2)根据点A的坐标确定出平移规律,然后依次写出B1、C1、D1的坐标,最后根据矩形的面积公式列式计算即可得解;
(3)根据三角形的面积公式列式求出OP,再分点P在点O的左边与右边两种情况求解.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+1(a<0)的图象过点(1,0)和(x1,0),且﹣2<x1<1,下列5个判断中:①b<0;②b﹣a<0;③a>b﹣1;④a<﹣;⑤2a<b+,正确的是( )
A. ①③ B. ①②③ C. ①②③⑤ D. ①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( ).
A. 点C的坐标是(0,1) B. 线段AB的长为2
C. △ABC是等腰直角三角形 D. 当x>0时,y随x增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列分解因式正确的是( )
A.x2+y2=(x+y)(x﹣y)
B.a2﹣9=(a+3)(a﹣3)
C.(a+3)(a﹣3)=a2﹣9
D.x3﹣x=x(x2﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2 , 则( )
A.m=﹣5,n=﹣1
B.m=5,n=1
C.m=﹣5,n=1
D.m=5,n=﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com