精英家教网 > 初中数学 > 题目详情

【题目】已知AB//CD,点E为平面内一点,BE⊥CEE

1)如图1,请直接写出∠ABE∠DCE之间的数量关系

2)如图2,过点EEF⊥CD,垂足为F,求证:∠CEF=∠ABE

3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CDD,连接BD,若∠DBE+∠ABD180°,且∠BDE3GEF,求∠BEG的度数.

【答案】1)∠ECD90°+∠ABE;2)见解析;(3105°

【解析】

1)如图1中,从BEDC的延长线于H.利用三角形内角和定理即可证明;

2)只要证明∠CEF与∠CEM互余,∠BEM与∠CEM互余,可得∠CEF=∠BEM即可解决问题;

3)如图3中,设∠GEF,∠EDF.想办法构建方程求出即可解决问题;

1)结论:∠ECD90°+∠ABE

理由:如图1中,延长BEDC的延长线于H

ABCH

∴∠ABE=∠H

BECE

∴∠CEH90°,

∴∠ECH180°CEHH180°90°H90°H

∴∠ECD180°ECH180°90°H)=90°+∠H

∴∠ECD90°+∠ABE

2)如图2中,作EMCD

EMCDCDAB

ABCDEM

∴∠BEM=∠ABE,∠F+∠FEM180°,

EFCD

∴∠F90°,

∴∠FEM90°,

∴∠CEF与∠CEM互余,

BECE

∴∠BEC90°,

∴∠BEM与∠CEM互余,

∴∠CEF=∠BEM

∴∠CEF=∠ABE

3)如图3中,设∠GEF,∠EDF

∴∠BDE3GEF3

EG平分∠CEF

∴∠CEF2FEG2

∴∠ABE=∠CEF2

ABCDEM

∴∠MED=∠EDF,∠KBD=∠BDF3,∠ABD+∠BDF180°,

∴∠BED=∠BEM+∠MED2

ED平分∠BEF

∴∠BED=∠FED2

∴∠DEC

∵∠BEC90°,

2290°,

∵∠DBE+∠ABD180°,∠ABD+∠BDF180°,

∴∠DBE=∠BDF=∠BDE+∠EDF3

∵∠ABK180°,

∴∠ABE+∠BDBE+∠KBD180°,

2+(3)+(3α+)=180°,

6+(22)=180°,

15°,

∴∠BEG=∠BEC+∠CEG90°+15°=105°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.
(1)当a=﹣ 时,①求h的值;
②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为 m的Q处时,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个长为4,宽为3,高为12矩形牛奶盒,从上底一角的小圆孔插入一根到达底部的直吸管,吸管在盒内部分a的长度范围是(牛奶盒的厚度、小圆孔的大小及吸管的粗细均忽略不计)(  )

A. 5≤a≤12B. 12≤a≤3

C. 12≤a≤4D. 12≤a≤13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:CD是经过∠BCA顶点C的一条直线,CACBEF分别是直线CD上两点,且∠BEC=∠CFA=∠α

(1)若直线CD经过∠BCA的内部,且EF在射线CD上.

①如图1,若∠BCA90°,∠α90°,则BE CF

②如图2,若<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;

(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出关于EFBEAF三条线段数量关系的合理猜想:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图所示,某公路一侧有AB两个送奶站,C为公路上一供奶站,CACB为供奶路线,现已测得AC=8kmBC=15kmAB=17km1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,再从中任意摸出1个球是白球的概率为 .
(1)试求袋中蓝球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是(
A.45°
B.54°
C.40°
D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,A(mn+2)B(m+4n)

1)当m2n2时,

①如图1,连接AOBO,求三角形ABO的面积;

②如图2,在y轴上是否存在点P,使三角形PAB的面积等于8,若存在,求P点坐标;若不存在,请说明理由;

2)如图3,过AB两点作直线AB,当直线ABy轴上点Q(03)时,试求出mn的关系式.

(温情提示:(a+b)×(c+d)ac+ad+bc+bd

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方米60元、80元、40元.

(1)探究1:如果木板边长为1米,FC= 米,则一块木板用墙纸的费用需元;
(2)探究2:如果木板边长为2米,正方形EFCG的边长为x米,一块木板需用墙纸的费用为y元,
①用含x的代数式表示y(写过程).
②如果一块木板需用墙纸的费用为225元,求正方形EFCG的边长为多少米?

查看答案和解析>>

同步练习册答案