精英家教网 > 初中数学 > 题目详情

【题目】如图是一个长为4,宽为3,高为12矩形牛奶盒,从上底一角的小圆孔插入一根到达底部的直吸管,吸管在盒内部分a的长度范围是(牛奶盒的厚度、小圆孔的大小及吸管的粗细均忽略不计)(  )

A. 5≤a≤12B. 12≤a≤3

C. 12≤a≤4D. 12≤a≤13

【答案】D

【解析】

最短距离就是牛奶盒的高度,当吸管、牛奶盒的高及底面对角线的长正好构成直角三角形时,插入盒子内的吸管长度最长,用勾股定理即可解答.

最短距离就是牛奶盒的高度,即最短为12

由题意知:牛奶盒底面对角长为5

当吸管、牛奶盒的高及底面对角线的长正好构成直角三角形时,插入盒子内的吸管长度最长,

则吸管长度为13

即吸管在盒内部分a的长度范围是12≤a≤13

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 , ∠AFB=∠ .
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ.
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)判断△CDB的形状并说明理由;
(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,点,点的坐标分别为

1)将平移后得到,若点对应的点的坐标为,画出平移后的

2)画出关于原点成中心对称的

3)如果以为顶点的四边形是平行四边形,请直接写出满足条件的所有点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形中,动点分别从两点同时出发,以相同的速度在直线上移动;

(1)如图①,当分别移动到边的延长线上时,连接的关系为____

(2)如图②,己知正方形的边长为分别从点同时出发,以相同的速度沿方向向终点运动,连接,交于点,请你画出点运动路线的草图,试求出线段的最小值.

(3)如图③,在(2)的条件下,求周长的最大值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交 于点E,以点C为圆心,OA的长为直径作半圆交CE于点D.若OA=4,则图中阴影部分的面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB//CD,点E为平面内一点,BE⊥CEE

1)如图1,请直接写出∠ABE∠DCE之间的数量关系

2)如图2,过点EEF⊥CD,垂足为F,求证:∠CEF=∠ABE

3)如图3,在(2)的条件下,作EG平分∠CEF,交DF于点G,作ED平分∠BEF,交CDD,连接BD,若∠DBE+∠ABD180°,且∠BDE3GEF,求∠BEG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,BA⊥MN,垂足为A,BA=4,点P是射线AN上的一个动点(不与点A重合),∠BPC=∠BPA,BC⊥BP,过点C作CD⊥MN,垂足为D,设AP=x

(1)CD的长度是否随着x的变化而变化?若变化,用含x的代数式表示CD的长度;若不变化,求出线段CD的长度;
(2)△PBC的面积是否存在最小值?若存在,请求出这个最小值,并求出此时的x的值;若不存在,请说明理由;
(3)当x取何值时,△ABP和△CDP相似;
(4)如图2,当以C为圆心,以CP为半径的圆与线段AB有公共点时,求x的值。

查看答案和解析>>

同步练习册答案