【题目】如图,直线y=2x+3与y轴交于A点,与反比例函数y= (x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).
(1)求反比例函数的解析式;
(2)点D(a,1)是反比例函数y= (x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】
(1)解:∵BC⊥x轴于点C,且C点的坐标为(1,0),
∴在直线y=2x+3中,当x=1时,y=2+3=5,
∴点B的坐标为(1,5),
又∵点B(1,5)在反比例函数y= 上,
∴k=1×5=5,
∴反比例函数的解析式为:y= ;
(2)解:将点D(a,1)代入y= ,得:a=5,
∴点D坐标为(5,1)
设点D(5,1)关于x轴的对称点为D′(5,﹣1),
过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,
可得: ,
解得: ,
∴直线BD′的解析式为:y=﹣ x+ ,
根据题意知,直线BD′与x轴的交点即为所求点P,
当y=0时,得:﹣ x+ =0,解得:x= ,
故点P的坐标为( ,0).
【解析】(1)依据题意可得到点B的横坐标,然后可将点B的横坐标代入直线解析式可得到点B的纵坐标,最后,将点B的坐标代入反例函数的解析式求解即可;
(2)将y=1代入反比例函数解析式可求出点D的坐标,作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“作中边上的高线”的尺规作图过程.
已知:.
求作:中边上的高线.
作法:如图,
①以点为圆心,的长为半径作弧,以点为圆心,的长为半径作弧,两弧在下方交于点;
②连接交于点.
所以线段是中边上的高线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵ , ,
∴点,分别在线段的垂直平分线上( )(填推理的依据).
∴垂直平分线段.
∴线段是中边上的高线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,D是边AC上一点,连接BD,使∠A=2∠1,点E是BC上的一点,以BE为直径的⊙O经过点D.
(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次考试中,某班级的数学成绩统计图如图.下列说法错误的是( )
A. 得分在70~80分之间的人数最多 B. 该班的总人数为40
C. 得分在90~100分之间的人数最少 D. 及格(≥60分)人数是26
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:
销售方式 | 批发 | 零售 |
售价(元/kg) | 10 | 14 |
通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售x kg.
(1)求y与x之间的函数关系
(2)求该农户所收获的最大利润
(总利润=总销售额-总承包费用-购买板栗苗的费用-总管理费用)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王剪了两张直角三角形纸片,进行了如下的操作:
操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为 ;
操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com