【题目】如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.
(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC= AM;
(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答
【答案】
(1)
解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD= BD,
∵BD=24,
∴OB=12,
在Rt△OAB中,
∵AB=13,
∴OA= = =5.
(2)
证明:如图2,
∵四边形ABCD是菱形,
∴BD垂直平分AC,
∴FA=FC,∠FAC=∠FCA,
由已知AF=AM,∠MAF=60°,
∴△AFM为等边三角形,
∴∠M=∠AFM=60°,
∵点M,F,C三点在同一条直线上,
∴∠FAC+∠FCA=∠AFM=60°,
∴∠FAC=∠FCA=30°,
∴∠MAC=∠MAF+∠FAC=60°+30°=90°,
在Rt△ACM中,∠ACM=180°﹣90°﹣60°=30°.
∴AC= AM.
(3)
解:如图3,连接EM,
∵△ABE是等边三角形,
∴AE=AB,∠EAB=60°,
由(1)知△AFM为等边三角形,
∴AM=AF,∠MAF=60°,
∴∠EAM=∠BAF,
在△AEM和△ABF中,
,
∴△AEM≌△ABF(SAS),
∵△AEM的面积为40,△ABF的高为AO
∴ BFAO=40,BF=16,
∴FO=BF﹣BO=16﹣12=4,
AF= = ,
∴△AFM的周长为3 .
【解析】(1)在Rt△OAB中,利用勾股定理OA= 求解.(2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,可得∠ACM=30°,即可.(3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF= = = ,得出△AFM的周长为3 .
【考点精析】通过灵活运用全等三角形的性质,掌握全等三角形的对应边相等; 全等三角形的对应角相等即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为 ,则图中阴影部分的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(5分)(2015春鞍山期末)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:
项目 | 月功能费 | 基本话费 | 长途话费 | 短信费 |
金额/元 | 5 | 50 |
(1)请将表格补充完整;
(2)请将条形统计图补充完整;
(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】上海世博会会期为2010年5月1日至2010年10月31日。门票设个人票和团队票两大类。个人普通票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
(1)如果2名老师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?
(2)用方程组解决下列问题:如果某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次分别有多少名老师、多少名学生参观世博会?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】铜陵职业技术学院甲、乙两名学生参加操作技能培训.从他们在培训期间参加的多次测试成绩中随机抽取8次,记录如下:
学生 | 8次测试成绩(分) | 平均数 | 中位数 | 方差 | |||||||
甲 | 95 | 82 | 88 | 81 | 93 | 79 | 84 | 78 | 85 | 35.5 | |
乙 | 83 | 92 | 80 | 95 | 90 | 80 | 85 | 75 | 84 |
(1)请你在表中填上甲、乙两名学生这8次测试成绩的平均数、中位数和方差。(其中平均数和方差的计算要有过程).
(2)现要从中选派一人参加操作技能大赛,从统计学的角度考虑,你认为选派哪名同学参加合适,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在直角坐标系中描出下列各点A(2,1),B(-2,1),C(3,2),D(-3,2);
(2)连结AB、CD观察它们与y轴的关系,
(3)猜想(a,1)(-a,1)两点的连线是否遵循上述规律.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:相等的实数看作同一个实数.有下列六种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③每个有理数都可以用数轴上唯一的点来表示;
④数轴上每一个点都表示唯一一个实数;
⑤没有最大的负实数,但有最小的正实数;
⑥没有最大的正整数,但有最小的正整数.
其中说法错误的有_____(注:填写出所有错误说法的编号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com