精英家教网 > 初中数学 > 题目详情

【题目】如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.

(1)快艇从港口B到小岛C需要多长时间?
(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.

【答案】
(1)

解:∵∠CBO=60°,∠COB=30°,

∴∠BCO=90°.

在Rt△BCO中,∵OB=120,

∴BC= OB=60,

∴快艇从港口B到小岛C的时间为:60÷60=1(小时)


(2)

解:过C作CD⊥OA,垂足为D,设相会处为点E.

则OC=OBcos30°=60 ,CD= OC=30 ,OD=OCcos30°=90,

∴DE=90﹣3v.

∵CE=60,CD2+DE2=CE2

∴(30 2+(90﹣3v)2=602

∴v=20或40,

∴当v=20km/h时,OE=3×20=60km,

当v=40km/h时,OE=3×40=120km.


【解析】(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间;(2)过C作CD⊥OA,垂足为D,设相会处为点E.求出OC=OBcos30°=60 ,CD= OC=30 ,OD=OCcos30°=90,则DE=90﹣3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2 , 即(30 2+(90﹣3v)2=602 , 解方程求出v=20或40,进而求出相遇处与港口O的距离.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.

(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;

(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧 于点D,连接CD、OD.下列结论:①AC∥OD;②CE=OE;③∠OED=∠AOD;④CD=DE.其中正确结论的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.

(1)a+b=    =   

(2)判断b+c,a﹣c,(b+c)(a﹣b)的符号;

(3)判断的符号.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两点在数轴上的位置如图所示,其中O为原点,点A对应的有理数为﹣4,点B对应的有理数为6.

(1)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0).

①当t=1时,AP的长为   ,点P表示的有理数为   

②当PB=2时,求t的值;

(2)如果动点P以每秒6个单位长度的速度从O点向右运动,点AB分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,且三点同时出发,那么经过几秒PA=2PB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的商品市场指导价为每千克150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量p(千克)与销售价格浮动的百分点x之间的函数关系为p=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每千克商品的成本为多少元?
(2)当该公司的商品定价为多少元时,日销售利润为576元?(说明:日销售利润=(销售价格一成本)×日销售量)
(3)该公司决定每销售一千克商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣1时,扣除捐赠后的日销售利润随x的增大而减小,直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂第一车间有x人,第二车间比第一车间人数的少20人,如果从第二车间调出15人到第一车间,那么

(1)调动后,第一车间的人数为   人;第二车间的人数为   人.

(2)调动后,第一车间的人数比第二车间的人数多多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数)。那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )

A. 0 B. 1 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…Pn…,记纸板Pn的面积为Sn,则S2018-S2019的值为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案