【题目】已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.
(1)a+b= , = ;
(2)判断b+c,a﹣c,(b+c)(a﹣b)的符号;
(3)判断的符号.
【答案】(1)0,﹣1;(2)b+c<0,a﹣c>0,( b+c)(a﹣b)<0;(3)的符号为正.
【解析】
(1)因为a和b异号,且绝对值相等,所以a与b是互为相反数,则和a+b=0,商=-1;
(2)根据数轴上a、b、c的大小关系:c<b<0<a,则:|a-c|=a-c,|c-b|=b-c,|b-a|=a-b;
(3)首先判断出a-c>0,b-c>0,于是得到结论.
(1)∵从数轴可知:c<b<0<a,且|a|=|b|,
∴a+b=0, =﹣1;
(2)∵c<b<0<a,且|a|=|b|,
∴b+c<0,a﹣c>0,( b+c)(a﹣b)<0;
(3)∵a﹣c>0,b﹣c>0,
∴的符号为正.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外取一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接ME.试判断ME与BC是否垂直,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.
(1)如图(1),
①若∠BAC=42°,∠DAE=30°,则α= ,β= .
②若∠BAC=54°,∠DAE=36°,则α= ,β= .
③写出α与β的数量关系,并说明理由;
(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.
(1)快艇从港口B到小岛C需要多长时间?
(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )
A. (1,2)B. (﹣1,2)C. (﹣1,0)D. (1,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:﹣3﹣(﹣5)+(﹣6)﹣(﹣3);
(2)计算:﹣23+(﹣4)×[(﹣1)2015+(﹣)2];
(3)解方程:2x﹣(2﹣x)=4
(4)解方程:2﹣=;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com