【题目】已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.
(1)不等式b+2c+8≥0是否成立?请说明理由;
(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.
【答案】
(1)解:由题意抛物线的顶点坐标(3,8),
∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,
∴b=12,c=﹣10,
∴b+2c+8=12﹣20+8=0,
∴不等式b+2c+8≥0成立
(2)解:设M(m,n),
由题意 3|n|=9,
∴n=±6,
①当n=6时,6=﹣2m2+12m﹣10,
解得m=2或4,
②当n=﹣6时,﹣6=﹣2m2+12m﹣10,
解得m=3± ,
∴满足条件的点M的坐标为(2,6)或(4,6)或(3+ ,﹣6)或(3﹣ ,﹣6)
【解析】由题意可知抛物线的解析式为y=-2(x-3)2+8,由此求出b、c即可解决问题.设M(m,n),由题意3|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心、OB为半径作圆,且⊙O过A点.
(Ⅰ)如图①,若⊙O的半径为5,求线段OC的长;
(Ⅱ)如图②,过点A作AD∥BC交⊙O于点D,连接BD,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.
(1)求证:∠AEB=∠ACF;
(2)求证:EF2BF22AC2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲,乙两人练习跑步,同时从学校出发,跑步去体育场锻炼,两人与学校的距离 y(米)与出发时间 x(分)之间的关系如图所示,则下列说法中:
①甲的速度是100米/分;
②4分钟时,甲,乙相遇;
③甲,乙两人相距50米的时间为3分钟或5分钟时;
④乙用了8分钟跑到体育场.
正确的个数有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平行四边形ABCD,点E在AD上,连接CE,点F为CE中点,连接DF,并且DF=EF.
(1)求证:平行四边形ABCD是矩形;
(2)如图2,过点B作BH⊥CE,垂足为H,连接AH,若∠AHB=45°,求证:AE=CD;
(3)如图3,在(2)的条件下,过点A作AK⊥BH,垂足为N,AK与BC交于点K,若四边形ABHE的面积为128,BK=2,求线段HF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,是的中点,将沿折叠后得到,点在矩形内部,延长交于点G.
(1)猜想线段与有何数量关系?并证明你的结论;
(2)若,,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com