精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ADBCABBCABBC4P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D

1)如图1,当PAB的中点时,求出AD的长

2)如图2,延长PEAD于点F,连接CF,求证:∠PCF45°

3)如图3,∠MON45°,在∠MON内部有一点Q,且OQ8,过点QOQ的垂线GH分别交OMONGH两点.设QGxQHy,直接写出y关于x的函数解析式

【答案】11;(2)见解析;(3

【解析】

(1)如图1.根据平行线的性质得到∠A=B=90°,由折叠的性质得到∠CEP=B=90°,PB=PE,∠BPC=EPC,根据全等三角形的性质得到∠APD=EPD,推出 于是得到结论;

(2)如图2.CCGAFAF的延长线于G,推出四边形ABCG是矩形,得到矩形ABCG是正方形,求得CG=CB,根据折叠的性质得到∠CEP=B=90°,BC=CE,∠BCP=ECP, 根据全等三角形的性质即可得到结论:

(3)如图3,将△OQG沿OM翻折至△OPG,将△OQH沿ON翻折至△ORH,延长PG, RH交于S,推出四边形PORS是正方形,根据勾股定理即可得到结论

解:(1)如图1,连结

∵AD//BC. AB⊥BC,

∴∠A=∠B=90°

∵将△BPC沿PC翻折至△EPC,

∴∠CEP=∠B=90°,PB=PE,∠BPC=∠EPC,

∴∠DEP=90°

∵当P为AB的中点,

∴AP=BP

∴PA=PE

∵PD=PD

,设,则

由勾股定理得

解得

1

2)如图2,作交延长线于,易证四边形为正方形

∵∠A=∠B=∠G=90°,

∴四边形ABCG是矩形,

∵AB=BC,

∴矩形ABCG是正方形,

∴CG=CB.

∵将△BPC沿PC翻折至△EPC,

∴∠ FED=90°,CG=CE,

又∵CF=CF

∴∠ECF=∠GCF,

∴∠BCP+∠GCF=∠PCE+∠FCE=45°

∴∠PCF=45°;

2/p>

(3)如图3.将△OQG沿OM翻折至OOPG.将△OQH沿ON翻折至△ORH.延长PG, RH交于S,则∠POG=QOG.ROH=QOH, OP=OQ=OR=8,PG=QG=x,QH=RH=y,

POR=2MON=90",

GHOQ.

∴∠OQG=OQH=90° .

∴∠P=R=90° ,

∴四边形PORS是正方形。

PS=RS=8,∠S=90°

.GS=8-x,HS=8-y.

.

3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.

情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:AB是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EAB上一点,连接DE.过点AAFDE,垂足为F,⊙O经过点CDF,与AD相交于点G

(1)求证:△AFG∽△DFC

(2)若正方形ABCD的边长为4,AE=1,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,点E为AB的中点.

(1)求证:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个抛物线型蔬菜大棚,将其截面放在如图所示的平面直角坐标系中,抛物线可以用函数yax2+bx来表示,已知OA=8米,距离O2米处的棚高BC米.

(1)求该抛物线的解析式;

(2)若借助横梁DEDEOA)建一个门,要求门的高度为1.5米,求横梁DE的长度是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2米.

(1)用含m的式子表示第三条边长;

(2)第一条边长能否为10米?为什么?

(3)若第一条边长最短,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:PAPBCD分别切⊙OABE三点,PA=6.求:

(1)PCD的周长;

(2)若∠P=50°,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为Rt△ABC的直角边AC上一点,以OC为半径的圆与斜边AB相切于点D,P是弧CD上任意一点,过点P作O的切线,交BC于点M,交AB于点N,已知AB=5,AC=4.

(1)△BMN的周长等于多少

(2)⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列五条结论: abc<0;4ac-b2<0;4a+c<2b;3b+2c<0;m(am+b)+b<a(m≠-1).其中正确的结论是_________(把所有正确的结论的序号都填写在横线上)

查看答案和解析>>

同步练习册答案