【题目】如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,沿C→A→B→C的路径运动一周,且速度为每秒2cm,设运动时间为t秒,当t=_____时,点P与△ABC的某两个顶点构成等腰三角形.
【答案】4或或或或3或.
【解析】
分点P在边AC和边AB上讨论: 当点P在边AC上时和当点P在边AB上时,进行计算即可得到答案.
∵△ABC中,∠C=90°,AC=4cm,BC=3cm,
∴AB===5,
当点P在边AC上时,当PA=PB时,如图1,
作AB边上的高PE,则AE=BE=,
易证得△APE∽△ABC,
∴,即,
∴AP=,
此时(4﹣)÷2=(秒);
当CP=CB时,
∵CP=3cm,此时t=3÷2=(秒);
当点P在边AB上时,
当AC=AP,此时(4+4)÷2=4(秒);
当AP=PC时,如图2,
∴点P在AC的垂直平分线与AB的交点处,即在AB的中点,
则AP=AB=,此时(4+2.5)÷2=(秒)
当CP=CB时,如图3,
作AB边上的高CD,
∵AC×BC=AB×CD.
∴CD==,
在Rt△CDP中,根据勾股定理得,DP==1.8,
∴BP=2DP=3.6,
∴AP=1.4,
∴t=(AC+AP)÷2=(4+1.4)÷2=(秒)
当BC=BP时,
∴BP=3cm,CA+AP=4+5﹣3=6(cm),
∴t=6÷2=3(秒);
当PB=PC,
∴点P在BC的垂直平分线与AB的交点处,即在AB的中点,
此时CA+AP=4+2.5=6.5(cm),
t=6.5÷2=(秒);
综上可知,当4或或或或3或时点P与△ABC的某两个顶点构成等腰三角形,故答案为4或或或或3或.
科目:初中数学 来源: 题型:
【题目】有一数值转换器,原理如图所示,如果开始输入的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2021次输出的结果是 _________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是时,它也不一定是正多边形,如图,是正三角形,,证明六边形的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是时,它是正多边形,我想…,边数是时,它可能也是正多边形.
请你说明乙同学构造的六边形各内角相等;
请你证明,各内角都相等的圆内接七边形(如图)是正七边形;(不必写已知,求证)
根据以上探索过程,提出你的猜想.(不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()
A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】满足下列条件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点在格点上.
(1)画出△ABC关于直线l对称的△A1B1C1;
(2)在直线l上找一点P,使PA+PB的长最短;(不写作法,保留作图痕迹)
(3)△ABC 直角三角形(填“是”或“不是”),并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)如图①,在AB上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求D、E两点的坐标;
(2)如图②,若OE上有一动点P(不与O,E重合),从点O出发,以每秒1个单位的速度沿OE方向向点E匀速运动,设运动时间为t秒(0<t<5),过点P作PM⊥OE交OD于点M,连接ME,求当t为何值时,以点P、M、E为顶点的三角形与△ODA相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调调查. 问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.
请根据上述信息解答下列问题:
(1)该班参与问卷调查的人数有 人;
(2)补全条形统计图;
(3)求C类人数占总调查人数的百分比;
(4)求扇形统计图中A类所对应扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知,且3x+4z﹣2y=40,求x,y,z的值;
(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com