精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AC=BC,数学公式,D在AC上,BD=DE,且∠EDB=90°,则CE的长为________,AD的长为________.

    
分析:先过点D作DF⊥BC于F,设AD=x,由于AC=BC,∠C=30°,根据三角形内角和定理,易求∠CAB=∠CBA=75°,而BD=DE,且∠EDB=90°,那么△BDE是等腰直角三角形,利用其性质,可求∠DEB=∠DBE=45°,DF=BE,从而可求∠ABD=30°,再利用相似三角形的判定,可知△ABC∽△ADB,可得AB:AD=AC:AB,利用△ABD是等腰三角形,△BDE是等腰直角三角形,DF⊥BE,∠C=30°,可求BE=CD=2,再代入①中,即可求x,从而可求AD、CE.
解答:解:过点D作DF⊥BC于F,设AD=x,
∵AC=BC,∠C=30°,
∴∠CAB=∠CBA=75°,
又∵BD=DE,且∠EDB=90°,
∴△BDE是等腰直角三角形,
∴∠DEB=∠DBE=45°,DF=BE,
∴∠DBA=75°-45°=30°,
在△ABC和△ABD中,
∵∠A=∠A,∠ABD=∠ACB,
∴△ABC∽△ADB,
∴AB:AD=AC:AB①,
又∵△ABD是等腰三角形,
∴BD=
同理DE=
∴BE==2,
又∵DF⊥BE,
∴DF=BE=1,
在△CDF中,∠C=30°,∠CFD=90°,
∴CD=2DF=2,
∴x(x+2)=2,
解得x=-1(负数不合题意,舍去),
∴CE=AD=x=-1.
故答案为:-1,-1.
点评:本题考查了三角形内角和定理、等腰直角三角形的判定和性质、相似三角形的判定和性质、勾股定理、等腰三角形三线合一定理,直角三角形中,30°的角所对直角边等于斜边的一半.解此题的关键是作辅助线DF⊥BC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案