精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边ABC中,DBC边上一点,EAC边上一点,且∠ADB+∠EDC120°

1)求证:ABD∽△DCE

2)若BD4CE3,求ABC的面积.

【答案】(1)证明见解析;(2)

【解析】

1)根据等边三角形性质求出∠B=C=60°,由∠ADB+∠EDC120°,根据等式性质求出∠BAD=CDE,即可证明ABD∽△DCE

2)由(1)知道ABD∽△DCE,对应边成比例得出,列方程解答即可.

(1)证明:∵△ABC是等边三角形,

∴∠B=C=60°,AB=AC

∴∠BAD+ADB=120°

又∵∠ADB+EDC=120°

∴∠BAD=EDC

∴△ABD∽△DCE.

2)由(1ABD∽△DCE可得:

4(AB-4)=3AB

AB=16.

过点AAFBCF,则BF=BC=8

RtABF中,AF==

∴△ABC的面积为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】RtABC中,已知C90°B50°,点D在边BC上,BD2CD(图4).把ABC绕着点D逆时针旋转m0m180)度后,如果点B恰好落在初始RtABC的边上,那么m_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在ABBC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且xy

1)若所用铁栅栏的长为40米,求yx的函数关系式,并直接写出自变量x的取值范围;

2)在(1)的条件下,求Sx的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0)A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边向OA终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ=y

1)直接写出y关于t的函数解析式及t的取值范围:   

2)当PQ=3时,求t的值;

3)连接OBPQ于点D,若双曲线经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B1 cm/s的速度移动,同时点Q从点B开始沿BC向点C2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x(x>0).

(1)求几秒后,PQ的长度等于5 cm.

(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末小明匀速步行赶往学校参加学校组织的植树活动,小明从家出发30分钟后,忽然想起没有带植树工具,于是马上掉头往回走行走速度比之前提高了1千米/时(仍保持匀速步行),同时小明打电话给爸爸,请爸爸帮他把植树工具送过来,从小明开始打电话到爸爸出门一共用了4分钟,爸爸的行走速度与此时小明的行走速度相同,两人相遇后,小明立即赶往学校,爸爸则转身回家,两人速度均保持不变,爸爸在回家途中用了10分钟吃早餐,然后立即回家,当爸爸到家时小明刚好到达学校.爸爸和小明相距的路程y(千米)与小明从家出发的时间x(分钟)之间的关系如图所示,求今天早上小明从家到学校途中行走的总路程是________千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,抛物线x轴交于点AC(点A在点C的左侧),与y轴交于点B,顶点为D.Q为线段BC的三等分点(靠近点C.

1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;

2)在(1)的条件下,当的面积最大时,过点E轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点DPGH构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个AOB.现将背面完全相同,正面分别标有数1235张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,再在剩下的4张卡片中任取一张,将该卡片上的数作为点P的纵坐标.

1)请用树状图或列表求出点P的坐标.

2)求点P落在AOB内部的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,正比例函数y=的图象经过A,点A的纵坐标为4,反比例函数y=的图象也经过点A,在第一象限内的点B在这个反比例函数图象上,过点BBCx轴,交y轴于点C,且AC=AB,求:

(1)这个反比例函数的解析式;

(2)ΔABC的面积.

查看答案和解析>>

同步练习册答案