【题目】如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边向OA终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ=y.
(1)直接写出y关于t的函数解析式及t的取值范围: ;
(2)当PQ=3时,求t的值;
(3)连接OB交PQ于点D,若双曲线经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.
【答案】(1);(2);(3)
【解析】
(1)过点作于点,由点,的出发点、速度及方向可找出当运动时间为秒时点,的坐标,进而可得出,的长,再利用勾股定理即可求出关于的函数解析式(由时间路程速度可得出的取值范围);
(2)将代入(1)的结论中可得出关于的一元二次方程,解之即可得出结论;
(3)连接,交于点,过点作于点,利用勾股定理可求出的长,由可得出,利用相似三角形的性质结合可求出,由可得出,在中可求出及的值,由,可求出点的坐标,再利用反比例函数图象上点的坐标特征即可求出值,此题得解.
解:(1)过点作于点,如图1所示.
当运动时间为秒时时,点的坐标为,点的坐标为,
,|,
,
.
故答案为:.
(2)当时,,
整理,得:,
解得:.
(3)经过点的双曲线的值不变.
连接,交于点,过点作于点,如图2所示.
,,
.
,
,
,
.
,
.
在中,,,
,,
点的坐标为,
经过点的双曲线的值为.
科目:初中数学 来源: 题型:
【题目】已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. - B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某隧道横断面由抛物线与矩形的三边组成,尺寸如图所示.
(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;
(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:
①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
则四边形ADCE的周长为( )
A.10B.20C.12D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:
甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形. | 乙:分别作与的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形. |
对于甲、乙两人的作法,可判断( )
A.甲正确,乙错误B.甲错误,乙正确
C.甲、乙均正确D.甲、乙均错误
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°.
(1)求证:△ABD∽△DCE;
(2)若BD=4,CE=3,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,则DM的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图中的型(正方形)、型(菱形)、型(等腰直角三角形)纸片分别放在个盒子中,盒子的形状、大小、质地都相同,再将这个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出个盒子,盒中的纸片既是轴对称图形又是中心对称图形的概率是 ;
(2)搅匀后先从中摸出个盒子(不放回),再从余下的个盒子中摸出个盒子,把摸出的个盒中的纸片长度相等的边拼在一起,求拼成的图形是轴对称图形的概率.(不重叠无缝隙拼接)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com