精英家教网 > 初中数学 > 题目详情

若不等式组有实数解,则实数m的取值范围是(  )              

A.m≤                       B.m<                     C.m>                     D.m≥


A【考点】解一元一次不等式组.                                                            

【专题】压轴题.                                                                              

【分析】解出不等式组的解集,根据不等式组有实数解,可以求出实数m的取值范围.              

【解答】解:解5﹣3x≥0,得x≤;                                                        

解x﹣m≥0,得x≥m,                                                                        

∵不等式组有实数解,                                                                       

∴m≤.                                                                                           

故选A.                                                                                            

【点评】本题是反向考查不等式组的解集,也就是在不等式组有实数解的情况下确定不等式中字母的取值范围,解答本题时,易忽略m=,当m=时,不等式组的解集是x=.                                

                                                                                                       


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(     )

A.1个  B.2个   C.3个  D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是(     )

A.    B.    C.    D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是在地上画出的半径分别为2m和3m的同心圆.现在你和另一人分别蒙上眼睛,并在一定距离外向圈内掷一粒较小的石子,规定一人掷中小圆内得胜,另一人掷中阴影部分得胜,未掷入半径为3m的圆内或石子压在圆周上都不算.                                           

(1)你会选择掷中小圆内得胜,还是掷中阴影部分得胜?为什么?               

(2)你认为这个游戏公平吗?如果不公平,那么大圆不变,小圆半径是多少时,使得仍按原规则进行,游戏是公平的?(只需写出小圆半径,不必说明原因)                                                           

                                                                              

查看答案和解析>>

科目:初中数学 来源: 题型:


在△ABC中,∠C=90°,AC=1,AB=3,则cosB=      .                    

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.                                             

(1)求抛物线的解析式;                                                                       

(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;                

(3)求△PAC为直角三角形时点P的坐标.                                           

                                                              

                                                                                                       

                                                                                                          

查看答案和解析>>

科目:初中数学 来源: 题型:


在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.                    

(1)求a的值;                                                                                

(2)设这条直线与y轴相交于点D,求△OPD的面积.                                

查看答案和解析>>

科目:初中数学 来源: 题型:


市和市分别有库存的某联合收割机12台和6台,现决定开往市10台和市8台,已知从市开往市、市的油料费分别为每台400元和800元,从市开往市和市的油料费分别为每台300元和500元.

(1)设市运往市的联合收割机为台,求运费关于的函数关系式.

(2)若总运费不超过9000元,问有几种调运方案?

(3)求出总运费最低的调运方案,并求出最低运费.

查看答案和解析>>

科目:初中数学 来源: 题型:


若|m|=2,|n|=3,则点A(m,n)(  )

A.四个象限均有可能

B.在第一象限或第三象限或第四象限

C.在第一象限或第二象限

D.在第二象限或第三象限或第四象限

 

查看答案和解析>>

同步练习册答案