精英家教网 > 初中数学 > 题目详情

如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.                                             

(1)求抛物线的解析式;                                                                       

(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;                

(3)求△PAC为直角三角形时点P的坐标.                                           

                                                              

                                                                                                       

                                                                                                          


【考点】二次函数综合题.                                                                     

【专题】几何综合题;压轴题.                                                              

【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.                                         

(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.                    

(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.                  

【解答】解:(1)∵B(4,m)在直线y=x+2上,                                        

∴m=4+2=6,                                                                                     

∴B(4,6),                                                                                   

∵A()、B(4,6)在抛物线y=ax2+bx+6上,                                     

,解得,                                              

∴抛物线的解析式为y=2x2﹣8x+6.                                                        

                                                                                                          

(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),                  

∴PC=(n+2)﹣(2n2﹣8n+6),                                                           

=﹣2n2+9n﹣4,                                                                                 

=﹣2(n﹣2+,                                                                        

∵PC>0,                                                                                         

∴当n=时,线段PC最大且为.                                                       

                                                                                                          

(3)∵△PAC为直角三角形,                                                                

i)若点P为直角顶点,则∠APC=90°.                                                   

由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;                        

ii)若点A为直角顶点,则∠PAC=90°.                                                  

如答图3﹣1,过点A()作AN⊥x轴于点N,则ON=,AN=.                

过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,              

∴MN=AN=,∴OM=ON+MN=+=3,                                                

∴M(3,0).                                                                                  

设直线AM的解析式为:y=kx+b,                                                          

则:,解得,                                                             

∴直线AM的解析式为:y=﹣x+3  ①                                                     

又抛物线的解析式为:y=2x2﹣8x+6 ②                                                    

联立①②式,解得:x=3或x=(与点A重合,舍去)                                   

∴C(3,0),即点C、M点重合.                                                         

当x=3时,y=x+2=5,                                                                        

∴P1(3,5);                                                                                 

              

iii)若点C为直角顶点,则∠ACP=90°.                                                  

∵y=2x2﹣8x+6=2(x﹣2)2﹣2,                                                             

∴抛物线的对称轴为直线x=2.                                                               

如答图3﹣2,作点A()关于对称轴x=2的对称点C,                          

则点C在抛物线上,且C().                                                      

当x=时,y=x+2=.                                                                          

∴P2).                                                                              

∵点P1(3,5)、P2)均在线段AB上,                                          

∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或().                    

【点评】此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识.                                                                                            

           

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.

(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 _______

(2)乙车休息的时间为_________

(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式___________;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式______

(4)求行驶多长时间两车相距100km.

查看答案和解析>>

科目:初中数学 来源: 题型:


下列选项中,不是依据三角形全等知识解决问题的是(     )

A.利用尺规作图,作一个角等于已知角

B.工人师傅用角尺平分任意角

C.利用卡钳测量内槽的宽

D.用放大镜观察蚂蚁的触角

查看答案和解析>>

科目:初中数学 来源: 题型:


一个正方形的面积是9a2﹣6a+1(a>1),则该正方形的周长是      .                   

查看答案和解析>>

科目:初中数学 来源: 题型:


若不等式组有实数解,则实数m的取值范围是(  )              

A.m≤                       B.m<                     C.m>                     D.m≥

查看答案和解析>>

科目:初中数学 来源: 题型:


父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.                                                                       

(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;                                       

(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.                                               

查看答案和解析>>

科目:初中数学 来源: 题型:


一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为      .               

查看答案和解析>>

科目:初中数学 来源: 题型:


根据下列条件分别确定函数y=kx+b的解析式:

(1)y与x成正比例,当x=2时,y=3;

(2)直线y=kx+b经过点(2,4)与点(.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是(  )

A.∠3=∠4   B.∠1=∠2   C.∠B=∠DCE     D.∠D+∠DAB=180°

查看答案和解析>>

同步练习册答案