【题目】如图,∠ABM=90°,⊙O分别切AB、BM于点D、E.AC切⊙O于点F,交BM于点C(C与B不重合).
(1)用直尺和圆规作出AC(保留作图痕迹,不写作法);
(2)若⊙O半径为1,AD=4,求AC的长.
【答案】(1)见解析 (2)
【解析】
(1)根据题意利用尺规作图作出AC即可;
(2)先证明矩形ODBE是正方形,再利用正方形的性质和勾股定理即可解答.
(1)如图,AC即为所求;
(2)解:连OD、OE.
∵ ⊙O分别切AB、BM于点D、E,
∴ OD⊥AB,OE⊥BC.
∴ ∠ODB=90°,∠OEB=90°.
又 ∠ABM=90°,
∴ 四边形ODBE是矩形.
∵ OD=OE,
∴ 矩形ODBE是正方形.
∴ BD=BE=OD=1
∵ ⊙O分别切AB、AC于点D、F,
∴ AF=AD=4.
同理 CF=CE
∵ Rt△ABC中,∠B=90°,
∴ AC2=AB2+BC2.
即 (CE+4)2=(CE+1)2+52.
解得 CE=.
∴ AC=AF+CF=
科目:初中数学 来源: 题型:
【题目】已知⊙O经过四边形ABCD的B、D两点,并与四条边分别交于点E、F、G、H,且.
(1)如图①,连接BD,若BD是⊙O的直径,求证:∠A=∠C;
(2)如图②,若的度数为θ,∠A=α,∠C=β,请直接写出θ、α和β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平移抛物线,下列哪种平移方法不能使平移后的抛物线经过原点( )
A.向左平移2个单位B.向右平移5个单位
C.向上平移10个单位D.向下平移20个单位
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线 与轴的两个交点间的距离为2.
(1)若此抛物线的对称轴为直线 ,请判断点(3,3)是否在此抛物线上?
(2)若此抛物线的顶点为(S,t),请证明;
(3)当时,求的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.
(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;
(2)若将△OCD绕O旋转到如图(2)的位置,连AD、BC,取BC的中点M,请探究线段OM、AD之间的关系,并证明你的结论;
(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.
原题:如图①,点分别在正方形的边上,,连接,则,试说明理由.
(1)思路梳理
因为,所以把绕点逆时针旋转90°至,可使与 重合.因为,所以,点共线.
根据 ,易证 ,得.请证明.
(2)类比引申
如图②,四边形中,,,点分别在边上,.若都不是直角,则当
(3)联想拓展
如图③,在中,,点均在边上,且.猜想应满足的等量关系,并写出证明过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com