【题目】如图, 在⊙O 中,点 C 在优弧 AB 上, 将弧 BC 沿 BC 折叠后刚好经过 AB的中点 D. 若⊙O的半径为,AB=4,则 BC 的长是( )
A.2B.3C.4D.2
【答案】B
【解析】
连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.
解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,
∵D为AB的中点,
∴OD⊥AB,
∴AD=BD=AB=2,
在Rt△OBD中,
∵将弧沿BC折叠后刚好经过AB的中点D.
∴弧AC和弧CD所在的圆为等圆,
∴AC=DC,
∴AE=DE=1,
∵CE⊥AB,OF⊥CE,OD⊥AB;AE=DE =OD=1
∴四边形ODEF为正方形,
∴OF=EF=1,
在Rt△OCF中,
∴CE=CF+EF=2+1=3,
∵BE=BD+DE=2+1=3,
故选:B.
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=2ax2﹣ax﹣3(a+1)与x轴交于点AB(点A在点B的左侧).
(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;
(2)如图,当AC⊥BC时,求a的值和AB的长;
(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE的面积为S,请求出S与h的函数关系式,并求出S取得最大值时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图所示,点为矩形边的中点,在矩形的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员从点出发,沿着的路线匀速行进,到达点.设运动员的运动时间为,到监测点的距离为.现有与的函数关系的图象大致如图所示,则这一信息的来源是( ).
A. 监测点 B. 监测点 C. 监测点 D. 监测点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标中,点A(m,n)在第一象限内,AB⊥OA且AB=OA,反比例函数y=的图象经过点A,
(1)当点B的坐标为(4,0)时(如图1),求这个反比例函数的解析式;
(2)当点B在反比例函数y=的图象上,且在点A的右侧时(如图2),用含字母m,n的代数式表示点B的坐标;
(3)在第(2)小题的条件下,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图:
(1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C;
(2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D;
(3)连接BD,BC.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠ABD=90°B.CA=CB=CDC.sinA=D.cosD=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.
(1)求证:∠A=∠CBD.
(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD为⊙O的直径,弦AB垂直于CD,垂足为H,∠EAD=∠HAD.
(1)求证:AE为⊙O的切线;
(2)延长AE与CD的延长线交于点P,过D 作DE⊥AP,垂足为E,已知PA=2,PD=1,求⊙O的半径和DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com