精英家教网 > 初中数学 > 题目详情

【题目】如图, 在⊙O 中,点 C 在优弧 AB 上, 将弧 BC 沿 BC 折叠后刚好经过 AB的中点 D 若⊙O的半径为AB=4,则 BC 的长是( )

A.2B.3C.4D.2

【答案】B

【解析】

连接ODACDCOBOC,作CE⊥ABEOF⊥CEF,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3

解:连接ODACDCOBOC,作CE⊥ABEOF⊥CEF,如图,

∵DAB的中点,
∴OD⊥AB
∴AD=BD=AB=2

Rt△OBD中,

将弧沿BC折叠后刚好经过AB的中点D

AC和弧CD所在的圆为等圆,

∴AC=DC
∴AE=DE=1
∵CE⊥ABOF⊥CEOD⊥ABAE=DE =OD=1

四边形ODEF为正方形,
∴OF=EF=1
Rt△OCF中,

∴CE=CF+EF=2+1=3
∵BE=BD+DE=2+1=3

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:抛物线y2ax2ax3a+1)与x轴交于点AB(点A在点B的左侧).

1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;

2)如图,当ACBC时,求a的值和AB的长;

3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点PPHx轴于点H,交BC于点D,作PEACBC于点E,设ADE的面积为S,请求出Sh的函数关系式,并求出S取得最大值时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图所示,点为矩形的中点,在矩形的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员从点出发,沿着的路线匀速行进,到达点.设运动员的运动时间为,到监测点的距离为.现有的函数关系的图象大致如图所示,则这一信息的来源是( ).

A. 监测点 B. 监测点 C. 监测点 D. 监测点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标中,点A(mn)在第一象限内,ABOAABOA,反比例函数y的图象经过点A

1)当点B的坐标为(40)时(如图1),求这个反比例函数的解析式;

2)当点B在反比例函数y的图象上,且在点A的右侧时(如图2),用含字母mn的代数式表示点B的坐标;

3)在第(2)小题的条件下,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程m为实数)有两个实数根.(提示:若是一元二次方程两根,则有

1)当m为何值时,

2)若,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们参加综合实践活动时,看到木工师傅用三弧法在板材边角处作直角,其作法是:如图:

1)作线段AB,分别以点AB为圆心,AB长为半径作弧,两弧交于点C

2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D

3)连接BDBC

根据以上作图过程及所作图形,下列结论中错误的是(

A.ABD90°B.CACBCDC.sinAD.cosD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ABC90°,以AB为直径作⊙OAC于点D,连接BD

1)求证:∠A=∠CBD

2)若AB10AD6M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD为⊙O的直径,弦AB垂直于CD,垂足为H,∠EAD=∠HAD

1)求证:AE为⊙O的切线;

2)延长AECD的延长线交于点P,过D DEAP,垂足为E,已知PA2PD1,求⊙O的半径和DE的长.

查看答案和解析>>

同步练习册答案