【题目】如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点.
(1)求证:四边形AECG是平行四边形:
(2)若AB=8cm,BC=6cm,求线段EF的长.
【答案】(1)证明见解析;(2)EF=3cm.
【解析】
(1)根据矩形的性质和折叠的性质求得AB∥CD,AG∥CE,即可证明四边形AECG是平行四边形;
(2)根据勾股定理求出AC的长,再根据CF=BC求出AF的长,设EF=BE=x,则AE=8﹣x,由勾股定理得EF2+AF2=AE2,代入求出x的值即可.
(1)∵四边形ABCD是矩形,
∴AB∥CD,AD∥BC,
∴∠DAC=∠BCA.
由折叠可知∠1,∠2,
∴∠1=∠2,
∴AG∥CE,
又∵AE∥CG,
∴四边形AECG是平行四边形;
(2)在Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,
由勾股定理可得:AC10,
又∵CF=BC,
则AF=AC﹣CF=4.
设EF=BE=x,则AE=8﹣x,
在Rt△AFE中,由勾股定理得EF2+AF2=AE2,
即x2+42=(8﹣x)2,
解得:x=3,
即EF=3cm.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=15.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.
(1)求证;四边形PBEC是平行四边形;
(2)填空:
①当AP的值为 时,四边形PBEC是矩形;
②当AP的值为 时,四边形PBEC是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+1与反比例函数y=(m≠0)相交于A、B两点,与x轴,y轴分别交于D、C两点,已知sin∠CDO=,△BOD的面积为1.
(1)求一次函数和反比例函数的解析式;
(2)连接OA,OB,点M是线段AB的中点,直线OM向上平移h(h>0)个单位将△AOB的面积分成1:7两部分,求h的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是等边三角形,,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于.
(1)证明:在运动过程中,点是线段的中点;
(2)当时,求的长;
(3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果变化请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).
阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当即时,函数的最小值为.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.
问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时, 的最小值为__________.
问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分别是AB和BC上的点.把△ABC沿着直线DE折叠,顶点B对应点是点B′
(1)如图1,点B′恰好落在线段AC的中点处,求CE的长;
(2)如图2,点B′落在线段AC上,当BD=BE时,求B′C的长;
(3)如图3,E是BC的中点,直接写出AB′的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎低端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 278 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计当很大时,摸到白球的频率将会接近 (精确到0.1);
(2)假如摸一次,摸到黑球的概率 ;
(3)试估算盒子里黑颜色的球有多少只.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com