【题目】如图,正方形ABCD和正方形CEFG的边长分别为a和b,正方形CEFG绕点C旋转,
(1)猜想BE与DG的关系,并证明你的结论;
(2)用含a、b的式子表示DE2+BG2.
【答案】(1)BE=DG,BE⊥DG,理由见解析;(2)BG2+DE2=2a2+2b2
【解析】
(1)由“SAS”可证△DCG≌△BEC,可得BE=DG,BE⊥DG;
(2)由勾股定理可得BD2=DM2+BM2,EG2=ME2+MG2,则BD2+EG2=DM2+BM2+ME2+MG2,可得BD2+EG2=BG2+DE2,即可求解.
解:(1)BE=DG,BE⊥DG,
理由如下:如图:连接BD,EG,BE,DG的交点为M,
∵四边形ABCD,四边形CEFG 为正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG,
∴∠BCE=∠DCG,且BC=DC,CG=CE,
∴△BCE≌△DCG(SAS),
∴DG=BE,∠CBE=∠CDG,
∵∠DBE+∠EBC+∠BDC+∠BCD=180°,
∴∠DBE+∠EBC+∠BDC=90°,
∵∠DBE+∠CDE+∠BDC+∠BMD=180°,
∴∠DCB=∠DMB=90°,
∴BE⊥DG,
(2)∵BE⊥DG
∴BD2=DM2+BM2,EG2=ME2+MG2,
∴BD2+EG2=DM2+BM2+ME2+MG2,
∴BD2+EG2=BG2+DE2,
∴AB2+AD2+EC2+CG2=BG2+DE2.
∴BG2+DE2=2a2+2b2.
科目:初中数学 来源: 题型:
【题目】已知一元二次方程的一根为.
求关于的函数关系式;
求证:抛物线与轴有两个交点;
设抛物线与轴交于、两点(、不重合),且以为直径的圆正好经过该抛物线的顶点,求,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别在AB,BC边上匀速移动,它们的速度分别为=2cm/s,=1cm/s,当点P到达点B时,P,Q两点同时停止运动,设点P的运动时间为t秒.
(1)用含t的代数式表示BP=______,BQ=_______;
(2)当t为何值时,△BPQ为等边三角形?
(3)当t为何值时,△BPQ为直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值
(1)(1+2x)(1﹣2x)﹣(x﹣3)2+5x(x﹣1),其中x=﹣2
(2)[2(x﹣y)2﹣(2x+y)(x﹣2y)]÷4y,其中x=﹣8,y=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形在坐标系中的位置如图所示,将正方形沿轴翻折一次,再沿轴翻折一次,然后向右平移个单位记作:图形的一次完整变化,图形经历次这样完整的变化后,点到达的位置坐标为( )
A. (-1,-4) B. (2,4) C. (-1,-4) D. (1,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,∠B=∠C,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为时________cm/s,在运动过程中能够使△BPD与△CQP全等.(直接填答案)
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天爷爷和小强去爬山,小强让爷爷先上, 图中两条线段分别表示两人离开山脚的距离(米)与爬山所用时间(分)的关系,看图回答问题:
①小强让爷爷先上______米,________ (填“小强”或“爷爷") 先爬上山顶;
②求小强离开山脚的距离(米)与爬山所用时间(分)的函数解析式及定义域;
③爷爷的平均速度为_______米/分.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com