精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,则图中的全等三角形对数共有( )

A. 1对 B. 2对 C. 3对 D. 4对

【答案】C

【解析】分析:由在RtACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB,利用HL易证得RtEBCRtEBDRtEADRtEBD,继而可得AED≌△BCE.

详解:∵ED垂直平分AB

AE=BEEDAB

∵在RtACB,C=90°BE平分∠ABC

EC=ED

RtECBRtEDB中,

EC=ED,BE=BE

RtEBCRtEBD(HL),

RtEADRtEBD中,

AE=BE,DE=DE

RtEADRtEBD(HL),

AEDBCE.

∴图中的全等三角形对数共有3.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市有三个景区是人们节假日游玩的热点景区,某学校对七1)班学生五一小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别,A:三个景区;B:游两个景区;C:游一个景区;D:不到这三个景区游玩,现根据调查结果绘制了如下不完全的条形统计图和扇形统计图请结合图中信息解答下列问题:

1)九(1)班现有学生__________人,在扇形统计图中表示“B类别的扇形的圆心角的度数为__________

2)请将条形统计图补充完整;

3)若该校七年级有1000名学生,求计划五一小长假随父母到这三个景区游玩的学生多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

出行方式

共享单车

步行

公交车

的士

私家车

根据以上信息,回答下列问题:

(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;

(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;

(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:

A

B

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。

(毛利润=(售价 - 进价)×销售量)

(1)该商场计划购进A,B两种品牌的教学设备各多少套?

(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5月16日,我校进行了全校师生防灾减灾大演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数、听广播后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某剧院的观众席的座位为扇形,且按下列分式设置:

排数(x

1

2

3

4

座位数(y

50

53

56

59

(1)按照上表所示的规律,当x每增加1时,y如何变化?

(2)写出座位数y与排数x之间的关系式;

(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两个芭蕾舞团参加舞剧《天鹅湖》的表演,已知甲、乙两个团的女演员的身高平均数分别为165cm165cm,方差分别为S21.5S22.5,则身高更整齐的芭蕾舞团是_____团.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点 O 为坐标原点,点 A x 轴负半轴上,点 BC 分别在 x 轴、y 轴正半轴上,且 OB=2OAOBOC=OCOA=2

1)求点 C 的坐标;

2)点 P 从点 A 出发以每秒 1 个单位的速度沿 AB 向点 B 匀速运动,同时点 Q 从点 B 出发 以每秒 3 个单位的速度沿 BA 向终点 A 匀速运动,当点 Q 到达终点 A 时,点 PQ 均停止运 动,设点 P 运动的时间为 t 秒(t0),线段 PQ 的长度为 y,用含 t 的式子表示 y,并写出 相应的 t 的范围;

3)在(2)的条件下,过点 P x 轴的垂线 PMPM=PQ,是否存在 t 值使点 O PQ 中 点?若存在求 t 值并求出此时三角形 CMQ 的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线MN与直线PQ相交于O,点A在射线OP上,点B在射线OM上.

(1)如图1,已知AG、BG分别是∠BAO和∠ABO角的平分线,求的度数;

(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,∠CED= 度;

(3)如图3,,过点B作直线CDMN,G为射线BD上一点,OF平分∠QOG,OEOF,探索的大小是否发生变化?若不变,求其值;若改变,说明理由.

查看答案和解析>>

同步练习册答案