【题目】直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.
(1)写出A,B两点的坐标,并画出直线l的图象;
(2)将直线l向上平移4个单位得到l1 , l1交x轴于点C. ①作出l1的图象,
②l1的解析式是 .
(3)将直线l绕点A顺时针旋转90°得到l2 , l2交l1于点D. ①作出l2的图象,
②tan∠CAD= .
【答案】
(1)解:当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),
当x=0时,y=2,即点B(0,2),
如图,直线AB即为所求;
(2)①y=﹣2x+6 ②
(3)① ②
【解析】(2.)直线l1即为所求, 直线l1的解析式为y=﹣2x+2+4=﹣2x+6,
所以答案是:y=﹣2x+6;(3)如图,直线l2即为所求,
∵直线l绕点A顺时针旋转90°得到l2 ,
∴由图可知,点B(0,2)的对应点坐标为(3,1),
设直线l2解析式为y=kx+b,
将点A(1,0)、(3,1)代入,得: ,
解得: ,
∴直线l2的解析式为y= x﹣ ,
当x=0时,y=﹣ ,
∴直线l2与y轴的交点E(0,﹣ ),
∴tan∠CAD=tan∠EAO= = = ,
所以答案是: .
(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1 , 根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO= 可得答案.
【考点精析】认真审题,首先需要了解一次函数的图象和性质(一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远).
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”,已知点A、B、C、D分别是“果圆”与坐标轴的交点,AB为半圆的直径,抛物线的解析式为y=x2﹣2x﹣3,求这个“果圆”被y轴截得线段CD的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电视台在它的娱乐性节目中每期抽出两名场外幸运观众,有一期甲、乙两人被抽为场外幸运观众,他们获得了一次抽奖的机会,在如图所示的翻奖牌的正面4个数字中任选一个,选中后翻开,可以得到该数字反面的奖品,第一个人选中的数字第二个人不能再选择了.
(1)如果甲先抽奖,那么甲获得“手机”的概率是多少?
(2)小亮同学说:甲先抽奖,乙后抽奖,甲、乙两人获得“手机”的概率不同,且甲获得“手机”的概率更大些.你同意小亮同学的说法吗?为什么?请用列表或画树状图分析.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.
(1)求BC边所在直线的解析式;
(2)设y=MP2+OP2 , 求y关于a的函数关系式;
(3)当△OPM为直角三角形时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.
请根据上述信息解答下列问题:
(1)本次调查数据的众数落在组内,中位数落在组内;
(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com