【题目】已知:如图△ABC是等边三角形,D,E分别是BC,AC上两点且BD=CE,以AD为边在AC一侧作等边△ADF.求证:EF∥BC.
【答案】证明:连接CF,
∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ACB=∠ABC=60°,
∵△ADF是等边三角形,
∴AD=AF,∠DAF=60°,
∴∠BAC=∠DAF=60°,
∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,
在△BAD和△CAF中
,
∴△BAD≌△CAF(SAS),
∴∠ACF=∠ABD=60°,BD=CF,
∵BD=CE,
∴CF=CE,
∴△CEF是等边三角形,
∴∠CEF=60°,
∴∠CEF=∠ACB=60°,
∴EF∥BC.
【解析】连接CF,首先根据等边三角形的性质求得AB=AC,AD=AF,∠BAD=∠CAF,然后再依据SAS证明△BAD和△CAF全等,得出∠ACF=∠ABD=60°,BD=CF,进而证得△CEF是等边三角形,然后可得到∠CEF=∠ACB=60°,最后,依据平行线的判定定理可得到问题的答案.
科目:初中数学 来源: 题型:
【题目】一个二元码是由0和1组成的数字串x1x2…xn(n为正整数),其中xk(k=1,2,…,n)称为第k位码元,如:二元码01101的第1位码元为0,第5位码元为1。
(1)二元码100100的第4位码元为;
(2)二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)。已知某种二元码x1x2…x7的码元满足如下校验方程组:
其中运算 定义为:0 0=0,1 1=0,0 1=1,1 0=1。
①计算:0 1 1 0=;
②现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了0101101,那么利用上述校验方程组可判定k等于。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B两点在数轴上的位置如图所示,其中点A对应的有理数为-4,且AB=10。动点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒(t>0)。
(1)当t=1时,AP的长为 , 点P表示的有理数为;
(2)当PB=2时,求t的值;
(3)M为线段AP的中点,N为线段PB的中点. 在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿。其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一。凡百钱买鸡百只,问鸡翁、母、雏各几何。”
译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱。现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?
结合你学过的知识,解决下列问题:
(1)若设公鸡有x只,母鸡有y只,
①则小鸡有只,买小鸡一共花费文钱;(用含x,y的式子表示)
②根据题意列出一个含有x,y的方程: ;
(2)若对“百鸡问题”增加一个条件:公鸡数量是母鸡数量的3倍,求此时公鸡、母鸡、小鸡各有多少只?
(3)除了问题(2)中的解之外,请你再直接写出两组符合“百鸡问题”的解。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=35°,∠D=30°,则∠AED等于多少度?
②若∠A=48°,∠D=32°,则∠AED等于多少度?
③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.
(2)拓展应用:
如图2,射线EF与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求写出证明过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com