精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.
分析:(1)根据函数图象过x轴上两点M(1,0)和N(3,0),设出函数两点式,将D(0,3)代入解析式,求出a的值,即可求出函数解析式;
(2)根据过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,再由AC=3,BC=4,求出B点坐标,利用待定系数法即可求出一次函数解析式;
(3)设⊙P与AB相切于点Q,与x轴相切于点C;证出△ABC∽△PBQ,得到
BQ
BC
=
PQ
AC
=
PC
AC
,求出PC的长,即可求出P点坐标.
解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),
∴假设二次函数解析式为:y=a(x-1)(x-3),
将D(0,3),代入y=a(x-1)(x-3),
得:3=3a,∴a=1,
∴抛物线的解析式为:y=a(x-1)(x-3)=x2-4x+3;

(2)∵过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,
1
2
AC×BC=6,
∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,
∴二次函数对称轴为x=2,
∴AC=3,
∴BC=4,
∴B点坐标为:(2,4)或(2,-4),
一次函数解析式为;y=kx+b,当点B为(2,4)时,
4=2k+b
0=-k+b

解得:
k=
4
3
b=
4
3

y=
4
3
x+
4
3

当点B为(2,-4)时,
-4=2k+b
0=-k+b

解得
k=-
4
3
b=-
4
3

y=-
4
3
x-
4
3

∴直线AB的解析式为:y=
4
3
x+
4
3
y=-
4
3
x-
4
3


(3)∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点Q,与x轴相切于点C;
∴PQ⊥AB,AQ=AC,PQ=PC,
∵AC=1+2=3,BC=4,
∴AB=5,AQ=3,
∴BQ=2,
∵∠QBP=∠ABC,
∠BQP=∠ACB,
∴△ABC∽△PBQ,
BQ
BC
=
PQ
AC
=
PC
AC

2
4
=
PC
3

∴PC=1.5,
P点坐标为:(2,1.5),
同理可得(2,-1•5),(2,-6),(2,6).
点评:本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案