【题目】如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.
(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵y=﹣x2+2x=﹣(x﹣1)2+1,
∴抛物线顶点坐标A(1,1),
联立抛物线与直线解析式可得 ,解得 或 ,
∴B(2,0),C(﹣1,﹣3)
(2)
解:证明:
由(1)可知B(2,0),C(﹣1,﹣3),A(1,1),
∴AB2=(1﹣2)2+12=2,BC2=(﹣1﹣2)2+(﹣3)2=18,AC2=(﹣1﹣1)2+(﹣3﹣1)2=20,
∴AC2=AB2+BC2,
∴△ABC是直角三角形,
∴∠ABC=90°
(3)
解:如图,过点P作PG∥y轴,交直线BC于点G,
设P(t,﹣t2+2t),则G(t,t﹣2),
∵点P在直线BC上方,
∴PG=﹣t2+2t﹣(t﹣2)=﹣t2+t+2=﹣(t﹣ )2+ ,
∴S△PBC=S△PGB+S△PGC= PG[2﹣(﹣1)]= PG=﹣ (t﹣ )2+ ,
∵﹣ <0,
∴当t= 时,S△PBC有最大值,此时P点坐标为( , ),
即存在满足条件的点P,其坐标为( , )
(4)
解:∵∠ABC=∠ONM=90°,
∴当△OMN和△ABC相似时,有 或 ,
设N(m,0),
∵MN⊥x轴,
∴M(m,﹣m2+2m),
∴MN=|﹣m2+2m|,ON=|m|,
② 当 时,即 = ,解得m=5或m=﹣1或m=0(舍去);
②当 = 时,即 = ,解得m= 或m= 或m=0(舍去);
综上可知存在满足条件的N点,其坐标为(5,0)或(﹣1,0)或( ,0)或( ,0)
【解析】(1)把抛物线解析式化为顶点式可求得A点坐标,联立抛物线与直线的解析式可求得B、C的坐标;(2)由A、B、C的坐标可求得AB2、BC2和AC2 , 由勾股定理的逆定理可判定△ABC是直角三角形;(3)过点P作PG∥y轴,交直线BC于点G,设出P点坐标,则可表示出G点坐标,从而可表示出PG的长,则可表示出△PBC的面积,利用二次函数的性质可求得其最大值时P点坐标;(4)设出M、N的坐标,则可表示出MN和ON的长度,由相似三角形的性质可得到关于N点坐标的方程可求得N点坐标.
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)在直角坐标系中画出△ABC关于x轴的对称图形△A1B1C1;
(2)在直角坐标系中将△ABC向左平移4个单位长度得△A2B2C2,画出△A2B2C2;
(3)若点D(m,n)在△ABC的边AC上,请分别写出△A1B1C1和△A2B2C2 的对应点D1和D2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是( )
A.1或2
B.2或3
C.3或4
D.4或5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2∥l3 , 等腰直角△ABC的三个顶点A,B,C分别在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距离为1,l2 , l3的距离为3,求:
(1)线段AB的长;
(2) 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1∥l2∥l3 , 等腰直角△ABC的三个顶点A,B,C分别在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距离为1,l2 , l3的距离为3,求:
(1)线段AB的长;
(2) 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论: ① = ;② = ;③ ;④ =
其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1 , 画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2 .
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生是;
(2)求图1中∠α的度数是°,
(3)把图2条形统计图补充完整;
(4)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com