精英家教网 > 初中数学 > 题目详情

【题目】已知直线l1∥l2∥l3 , 等腰直角△ABC的三个顶点A,B,C分别在l1 , l2 , l3上,若∠ACB=90°,l1 , l2的距离为1,l2 , l3的距离为3,求:
(1)线段AB的长;
(2) 的值.

【答案】
(1)解:

过A作AN⊥直线l3于N,过B作BM⊥l3于M,

则∠BMC=∠ANC=∠BCA=90°,

∴∠BCM+∠MBC=90°,∠BCM+∠ACN=90°,

∴∠MBC=∠ACN,

在△BMC和△CNA中

∴△BMC≌△CNA,

∴BM=CN,AN=CM,

∵l1,l2的距离为1,l2,l3的距离为3,

∴BM=CN=3,CM=AN=1+3=4,

在Rt△BMC中,由勾股定理得:BC=AC= =5,

在Rt△ACB中,由勾股定理得:AB= =5


(2)解:∵直线l2∥直线l3

∴∠DBC=∠BCM,

∵∠BCD=∠BMC=90°,

∴△BCD∽△CMB,

=

=

∴BD=

∵AB=5

= =


【解析】(1)过A作AN⊥直线l3于N,过B作BM⊥l3于M,根据全等三角形的判定得出△BMC≌△CNA,根据全等得出BM=CN,AN=CM,求出BM和CM,根据勾股定理求出BC、AC,再求出AB即可;(2)根据平行线性质得出∠DBC=∠BCM,根据相似三角形的判定得出△BCD∽△CMB,得出比例式,求出BD,即可求出答案.
【考点精析】本题主要考查了等腰直角三角形和相似三角形的判定与性质的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在关于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2 , k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2 , 满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为(
A.13
B.17
C.18
D.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则关于点D的说法正确的是( )
甲:点D在第一象限
乙:点D与点A关于原点对称
丙:点D的坐标是(﹣2,1)
丁:点D与原点距离是
A.甲乙
B.丙丁
C.甲丁
D.乙丙

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.

(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.

(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(4)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)一共调查了多少名学生;
(2)请补全条形统计图;
(3)若该校共有6000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.

查看答案和解析>>

同步练习册答案