【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.
(1)若AD=3 ,BE=4,求EF的长;
(2)求证:CE= EF;
(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.
【答案】
(1)
解:∵∠AED=90°,AE=DE,AD=3 ,
∴AE=DE=3,
在Rt△BDE中,
∵DE=3,BE=4,
∴BD=5,
又∵F是线段BD的中点,
∴EF= BD=2.5
(2)
解:如图1,连接CF,线段CE与FE之间的数量关系是CE= FE;
解法1:∵∠AED=∠ACB=90°
∴B、C、D、E四点共圆
且BD是该圆的直径,
∵点F是BD的中点,
∴点F是圆心,
∴EF=CF=FD=FB,
∴∠FCB=∠FBC,∠ECF=∠CEF,
由圆周角定理得:∠DCE=∠DBE,
∴∠FCB+∠DCE=∠FBC+∠DBE=45°
∴∠ECF=45°=∠CEF,
∴△CEF是等腰直角三角形,
∴CE= EF.
解法2:∵∠BED=∠AED=∠ACB=90°,
∵点F是BD的中点,
∴CF=EF=FB=FD,
∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,
∴∠DFE=2∠ABD,
同理∠CFD=2∠CBD,
∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,
即∠CFE=90°,
∴CE= EF.
2)(1)中的结论仍然成立.
(3)
解:解法1:如图2﹣1,连接CF,延长EF交CB于点G,
∵∠ACB=∠AED=90°,
∴DE∥BC,
∴∠EDF=∠GBF,
在△EDF和△GBF中,
,
∴△EDF≌△GBF,
∴EF=GF,BG=DE=AE,
∵AC=BC,
∴CE=CG,
∴∠EFC=90°,CF=EF,
∴△CEF为等腰直角三角形,
∴∠CEF=45°,
∴CE= FE;
解法2:如图2﹣2,连结CF、AF,
∵∠BAD=∠BAC+∠DAE=45°+45°=90°,
又∵点F是BD的中点,
∴FA=FB=FD,
在△ACF和△BCF中,
,
∴△ACF≌△BCF,
∴∠ACF=∠BCF= ∠ACB=45°,
∵FA=FB,CA=CB,
∴CF所在的直线垂直平分线段AB,
同理,EF所在的直线垂直平分线段AD,
又∵DA⊥BA,
∴EF⊥CF,
∴△CEF为等腰直角三角形,
∴CE= EF.
【解析】(1)由AE=DE,∠AED=90°,AD=3 ,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF= BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF= EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.
科目:初中数学 来源: 题型:
【题目】如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2 米处的点C出发,沿斜面坡度i=1: 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈ ,cos37°≈ ,tan37°≈ .计算结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为 . (至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.
(1)若α=0°,则DF=BF,请加以证明;
(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;
(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )
A.先往左上方移动,再往左下方移动
B.先往左下方移动,再往左上方移动
C.先往右上方移动,再往右下方移动
D.先往右下方移动,再往右上方移动
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(4,0),C(0,﹣4),另有一点B(﹣2,0).
(1)求一次函数解析式;
(2)联结BC,点P是反比例函数y= 的第一象限图象上一点,过点P作y轴的垂线PQ,垂足为Q.如果△QPO与△BCO相似,求P点坐标;
(3)联结AC,求∠ACB的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com