精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为

【答案】3或
【解析】解:连结CP,PB的延长线交⊙C于P′,如图,
∵CP=5,CB=3,PB=4,
∴CB2+PB2=CP2
∴△CPB为直角三角形,∠CBP=90°,
∴CB⊥PB,
∴PB=P′B=4,
∵∠C=90°,
∴PB∥AC,
而PB=AC=4,
∴四边形ACBP为矩形,
∴PA=BC=3,
在Rt△APP′中,∵PA=3,PP′=8,
∴P′A= =
∴PA的长为3或
故答案为3或
连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2 , 则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A= ,从而得到满足条件的PA的长为3或

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN= NF;③ = ;④S四边形CGNF= S四边形ANGD . 其中正确的结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为 的中点,P是直径MN上一动点.

(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).
(2)求PA+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.
(1)求∠CAO′的度数.
(2)显示屏的顶部B′比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.

(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).
备用数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.
(1)若AD=3 ,BE=4,求EF的长;
(2)求证:CE= EF;
(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣(k+1)x+ k2+1=0.
(1)当k取何值方程有两个实数根.
(2)是否存在k值使方程的两根为一个矩形的两邻边长,且矩形的对角线长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m.
(1)请说明此抛物线与x轴的交点情况;
(2)若此抛物线与直线y=x﹣3m+4的一个交点在y轴上,求m的值.

查看答案和解析>>

同步练习册答案