精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点A、B、C、D是坐标轴上的点且点C坐标是(0,﹣1),AB=5,点(a,b)在如图所示的阴影部分内部(不包括边界),已知OA=OD=4,则a的取值范围是(
A.
B.
C.
D.

【答案】D
【解析】解:∵AB=5,OA=4,

∴OB= =3,

∴点B(﹣3,0).

∵OA=OD=4,

∴点A(0,4),点D(4,0).

设直线AD的解析式为y=kx+b,

将A(0,4)、D(4,0)代入y=kx+b,

,解得:

∴直线AD的解析式为y=﹣x+4;

设直线BC的解析式为y=mx+n,

将B(﹣3,0)、C(0,﹣1)代入y=mx+n,

,解得:

∴直线BC的解析式为y=﹣ x﹣1.

联立直线AD、BC的解析式成方程组,

,解得:

∴直线AD、BC的交点坐标为( ,﹣ ).

∵点(a,b)在如图所示的阴影部分内部(不包括边界),

∴﹣3<a<

故选D.

【考点精析】通过灵活运用不等式的解集在数轴上的表示,掌握不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(本题8分)如图1,平行四边形ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.

(1)求证:四边形EGFH是平行四边形;

(2)如图2,若EF//AB,GH//BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,EF是四边形ABCD的对角线AC上的两点,AF=CEDF=BEDFBE

求证:(1)AFD≌△CEB.(2)四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:ABM≌△DCM

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当AD:AB= _时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1).求扶梯有多少级?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=ACDBC的中点,AC的垂直平分线分别交ACADAB于点EOF,则图中全等的三角形的对数是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了认真思考:

课本研究三角形中位线性质的方法
已知:如图①,已知△ABC中,D,E分别是AB,AC两边中点.求证:DE∥BC,DE= BC.
证明:延长DE至点F,使EF=DE,连接FC.…则△ADE≌△CFE.∴…



请你利用小亮的发现解决下列问题:
(1)如图③,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.
请你帮助小亮写出辅助线作法并完成论证过程:
(2)解决问题:如图⑤,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线.过点D,E作DF∥EG,分别交BC于点F,G,过点A作MN∥BC,分别与FD,GE的延长线交于点M,N,则四边形MFGN周长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,M,N分别为BE,CD的中点.

(1)求证:△ABE≌ACD;

(2)判断△AMN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1 , 另两张直角三角形纸片的面积都为S2 , 中间一张正方形纸片的面积为S3 , 则这个平行四边形的面积一定可以表示为(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

同步练习册答案