精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣20),点D的坐标为(02),点Bx轴的正半轴上,点E为线段AD的中点.

)如图1,求∠DAO的大小及线段DE的长;

)过点E的直线lx轴交于点F,与射线DC交于点G.连接OEOEF′OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为HEHC的面积为3

①如图2,当点G在点H的左侧时,求GHDG的长;

②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).

【答案】30°2;(①3+-3+②F(﹣5﹣,0).

【解析】解:(Ⅰ)∵A(﹣2,0),D(0,2)∴AO=2,DO=2,∴tan∠DAO==

∴∠DAO=60°,∴∠ADO=30°,∴AD=2AO=4,∵点E为线段AD中点,∴DE=2;

(Ⅱ)①如图2,

过点E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,

∵CD∥AB,∴∠DGE=∠OFE,

∵△OEF′是△OEF关于直线OE的对称图形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,

∵点E是AD的中点,∴OE=AD=AE,

∵∠EAO=60°,∴△EAO是等边三角形,∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,

∴∠EOF′=∠AEO,∴AD∥OF′,∴∠OF′E=∠DEH,∴∠DEH=∠DGE,

∵∠DEH=∠EDG,∴△DHE∽△DEG,∴,∴DE2=DG×DH,

设DG=x,则DH=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣,∴DG=﹣3+

②如图3,

过点E作EM⊥CD,∴CD∥AB,∴∠EDM=∠DAB=60°,∴EM=DEsin60°=,∴GH=6,

∵CD∥AB,∴∠DHE=∠OFE,

∵△OEF′是△OEF关于直线OE的对称图形,∴△OEF′≌△OEF,∴∠OFE=∠OF′E,

∵点E是AD的中点,∴OE=AD=AE,

∵∠EAO=60°,∴△EAO是等边三角形,∴∠EOA=60°,∠AEO=60°,

∵△OEF′≌△OEF,∴∠EOF′=∠EOA=60°,∴∠EOF′=∠AEO,∴AD∥OF′,

∴∠OF′E=∠DEH,∴∠DEG=∠DHE,

∵∠DEG=∠EDH,∴△DGE∽△DEH,∴,∴DE2=DG×DH,

设DH=x,则DG=x+6,∴4=x(x+6),∴x1=﹣3+,x2=﹣3﹣

∴DH=﹣3+.∴DG=3+∴DG=AF=3+,∴OF=5+,∴F(﹣5﹣,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,EF为对角线BD上的两点,且∠DAE=∠BCF

求证:(1AECF

2)四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象过M(1,3),N(-2,12)两点.

(1)求函数的解析式;

(2)试判断点P(2a,-6a+8)是否在函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前我市校园手机现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机调查了学校若干名家长对中学生带手机现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:

1)此次抽样调查中,共调查了多少名中学生家长;

2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;

3)根据抽样调查结果,请你估计我校11000名中学生家长中有多少名家长持反对态度;

4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°0.25,cos15°0.97,tan15°0.27,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的中线,于点的中点,连接.

1)求证:四边形是平行四边形;

2)若四边形的面积为,请直接写出图中所有面积是的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过直线上一点,作,若,①你还能求出哪些角的度数_____________________(至少写出两个,直角和平角除外);

②与互余的角有__________,它们的数量关系是________;由此你得出的结论是_____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在直角三角形ABC中,∠ABC=90,将三角形ABC绕着点B逆时针旋转一定角度得到三角形BEFEFBC于点G

1)若,当∠ABE等于多少度时,

2)若,当时,

①求BG的长;

②连接AFBE于点O,连接AE(如图2),设三角形EOF的面积为m,求三角形AEO的面积(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.

(1)求菱形ABCD的周长;

(2)若M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当M与AD相切,且切点为AD的中点时,连接AC,求t的值及MAC的度数;

(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.

【答案】1菱形的周长为8;(2t=MAC=105°(3)当t=1﹣或t=1+时,圆M与AC相切.

【解析】试题分析:1)过点BBEAD,垂足为E.由点A和点B的坐标可知:BE=AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 Mx轴的切线为FAD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点BBEAD,垂足为E,连接MFF MAD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MNAC,垂足为N,作MEAD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MNAC,垂足为N,作MEAD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.

试题解析:( 如图1所示:过点,垂足为

∵四边形为菱形,

∴菱形的周长

)如图2所示,⊙轴的切线为 中点为

,且中点,

解得

平移的图形如图3所示:过点

垂足为,连接 为⊙切点,

∵由()可知,

∵四边形是菱形,

切线,

的中点,

是等腰直角三角形,

)如图4所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线

如图5所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线,

综上所述,当时,圆相切.

点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.

型】解答
束】
28

【题目】如图1,在平面直角坐标系中,直线lx轴、y轴分别交于点B40)、C03),点Ax轴负半轴上一点,AMBC于点My轴于点N0 ).已知抛物线y=ax2+bx+c经过点ABC

(1)求抛物线的函数式;

2)连接AC,点D在线段BC上方的抛物线上,连接DCDB,若BCDABC面积满足SBCD= SABC 求点D的坐标;

(3)如图2,EOB中点,设F为线段BC上一点(不含端点),连接EF.一动点PE出发,沿线段EF以每秒3个单位的速度运动到F,再沿着线段PC以每秒5个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.

查看答案和解析>>

同步练习册答案