科目:初中数学 来源: 题型:
如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是( )
![]()
A. x<﹣2 B. ﹣2<x<4 C. x>0
D. x>4
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿OB方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.
![]()
(1)当t=5时,请直接写出点D、点P的坐标;
(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;
(3)点P在线段AB或线段BC上运动时,作PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图4,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是( )![]()
![]()
A.∠A=∠D B.AB=DC
C.∠ACB=∠DBC D.AC=BD
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原
理是:根据仪器结构,可得
△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是
A. SAS B. ASA C. AAS D. SSS
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣
x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com